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e The Surface Ocean - Lower Atmosphere Study
(SOLAS) is a multidisciplinary and global-scale
research programme.

e SOLAS integrates the efforts of marine biogeochemists,
physical oceanographers, atmospheric chemists,
meteorologists and climatologists, covering scales from
the microbial to global

e SOLAS Goal:
To achieve quantitative understanding of the
key biogeochemical-physical interactions and
feedbacks between the ocean and the
atmosphere, and how this coupled system
affects and is affected by climate and
environmental change
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o SOLAS is Sponsored by SCOR, IGBP,
CACGP and WCRP

o IGBP Core Project
o Part of the Earth System Science Partnership
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SOLAS Science
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e Sea-ice biogeochemistry and interactions with the
atmosphere

e Ocean-derived aerosols: production, evolution and
impacts

e Atmospheric control of nutrient cycling and production
in the surface ocean

e Ship plumes: impacts on atmospheric chemistry,
climate and nutrient supply to the oceans

o Air-sea gas fluxes at Eastern boundary upwelling and
Oxygen Minimum Zone (OMZ) systems

e SOLAS Observatory and MOIN: the Minimalist
OceanSITES Interdisciplinary Network
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o A distinctive feature of the ocean surface and surrounding
air is the progressive change in scale and progressively
greater interdependence of different processes as the
interface is approached
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Quantifying CO, Uptake by the Ocean
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o Current estimates is that the oceanic uptake flux including
anthropogenic COs is 2.0 £+ 1.0 Pg-C yr—!
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e The goal is to resolve air sea COs fluxes to 0.2 Pg-C yr—!
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Parameterising Air-Sea CO- Fluxes

o Transfer velocity & is not
F=Fk-s-ApCOy constant, but varies with wind
speed, sea state, turbulence in
the surface ocean, wave
breaking, whitecapping, and
the presence or otherwise of
surfactants and rain
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r Numbers indicate global
oceanic CO2 upake in
| billions of tonnes per year

e Transfer velocity k is usually
parameterized with wind
speed e.g. ko u®Sc?
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e Parameterisations of &k differ
2w s » by about 50% for winds of 7

. 4
Wind (ms ™) ms~'and by 100% at 15 ms™!
From Feely et al. (2001)

L L L
0 2 4 6 8 10

@ Direct measurements of fluxes
will lead to improved models
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Dual Tracer Transfer Velocity
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From Ho et al. (2011)

@ Dual Tracer method provides well-constrained transfer
velocity data

@ Other direct method for determining £ is eddy covariance
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Eddy Covariance Transfer Velocity
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From Edson et al. (2011)
o Eddy covariance k values have many more data points but
much higher scatter
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