

Final year project April – September 2010

Terrain Based Navigation using a Particle Filter for long range glider missions

Supervisor: Dr M. Rixen

Outline

- 2. Underwater navigation
- 3. Terrain Based Navigation
- 4. Particle Filter
- 5. Energy Budget
- 6. Simulations
- 7. Conclusions
- 8. Perspectives

1. Introduction

Processes operating at the air-sea interface and in the upper ocean mixed layer

- Oceans are the backbone of our ecosystem (climate, weather, fisheries)
- In situ data are needed to initialize, correct and validate oceanographic models

Introduction: Gliders

 Gliders are unique in the AUV world

"Gliders require no propeller and operate in a vertical saw tooth trajectory which ensures a high resolution in data sampling" (source: Slocum glider manual)

- Varying vehicle buoyancy creates the forward propulsion
- Challenge of underwater positioning
 - \Rightarrow Sea currents influence

 "Can we use a terrain navigation approach for a long range under ice mission in the Arctic Ocean?"

Effective localization and navigation is critical to successful AUV mission

Under ice - Long range mission

- GPS fix unlikely
- Drift of position estimate
- Growing navigation uncertainty
- Limited energy budget

The ALTEX AUV (Atlantic Layer Tracking Experiment)

2. Underwater navigation

NED

Ultra short baseline

NURC

PARTNERING FOR MARITIME

Earth's magnetic field

3. Terrain Based Navigation

• Principle

3. Terrain Based Navigation: Principle

 Totally autonomous process • Developed in 1958 to bound the error drift of cruise missile inertial navigation system

• Oceans seafloor represents a strong source of information

3. Terrain Based Navigation: Kalman filter?

 Assimilation of an observation (the depth of the glider) into the navigation process

Measurement update

 $\hat{x}_k = \hat{x}_k^- + K(z_k - H\hat{x}_k^-)$

 \hat{x}_k a posteriori state estimate \hat{x}_k^- dead reckoning estimate z_k actual bathymetric measurement K gain or blending factor $H\hat{x}_k^-$ predicted measurement

Minimize the estimate error covariance

$$P_k = E[e_k e_k^T] = E[(x_k - \hat{x}_k)(x_k - \hat{x}_k)^T]$$

t: the glider has a non linear evolution

$$\widehat{x}_{k}^{-} = f(\widehat{x}_{k-1}, u_{k-1}, w_{k-1})$$

se of a particle filter:
 \Rightarrow multi nodal
 \Rightarrow non Gaussian

NURC

FOR MARITIME

4. TBN – Particle Filter

4. TBN – Particle Filter: Prediction Step

projection forward in time using a kinematics model

4. TBN – Particle Filter: Update Step

- Update the weight of each particle given the likelihood between:
 - the bathymetric measurement
 - depth seen by each particle

4. TBN – Particle Filter: Re-sampling State estimation

Mean: $z_{PF} = \frac{\sum_{i=1}^{N} w_i z_i}{\sum_{i=1}^{N} w_i z_i}$

- z_{PF} : estimated depth
- w_i : weight attributed to particle i
- z_i : depth at particle "i" 's location

$$\operatorname{var}(Z) = \begin{pmatrix} z_1 - z_{PF} & z_2 - z_{PF} & \dots & z_N - z_{PF} \end{pmatrix} \begin{pmatrix} w_1 & & 0 \\ & w_2 & & \\ & & \ddots & \\ 0 & & & w_N \end{pmatrix} \begin{pmatrix} z_1 - z_{PF} \\ z_2 - z_{PF} \\ \vdots \\ z_N - z_{PF} \end{pmatrix}$$

 re-sampling prevents high concentration of probability mass at a few particles

4. TBN – Particle Filter: Simulation principle

- 1. Generation of a reference trajectory
- 2. Generation of a global dead reckoning trajectory with "virtual" measurements (attitude, heading, pressure), days 13 h
- 3. Generation of a trajectory constrained by currents

Last wpt

5. Energy Budget

- PARTNERING FOR MARITIME INNOVATION
- Mission endurance depends highly on the capacity and usage of batteries
 Bupyancy pumping policy:
- Tradeoff decisions between
 - energy consumption
 - Sensing
 - data processing
 - communication activities

Simulations: Arctic crossing Energy consumed

Slocum glider (1000m)

• Very deep water glider (4000m)

- "Can we use a terrain navigation algorithm for a long range under ice mission in the Arctic Ocean?"
 - Simulation results show that the TBN principle using a particle filter seems to be a perfect tradeoff to meet:
 - 1. Accurate navigation
 - 2. Limited endurance
 - 3. Low cost technology

- 1. an accurate, precise and independent positioning estimation process
- 2. a limited endurance
- a low cost technology
 - The particle filter works in a Bayesian framework

A tracking process "independent of time"

citioning uncertainty evolut

Accuracy and Precision of the particle filter navigation estimation are linked to:

- The resolution of the bathymetric chart
- The unique variability of the seafloor

- 1. an accurate, precise and independent positioning estimation process
- 2. a limited endurance
- a low cost technology
- Most of gliders operates solely on battery power

mission endurance

capacity and usage of batteries

Terrain Based Navigation: a perfect low energy consumption navigation solution

- Tracking process => possibility to plan the pinging policy
- Re-initialize the dead reckoning process

ENSIETA 5. Energy Budget: Integrated Navigation System

• Energy consumption of an inertial navigation system: 158 days simulation

- IMU Kongsberg MRU-Z: consumption 3 Watts
- DVL RDI workhorse Navigator: consumption 8 Watts

the use of an Inertial Navigation System remains very "expensive": 160 MJoules = some 37 days of laptop energy requirements

=> glider's battery (7800 KJoules) would be able to provide 1.5 day of laptop autonomy

- 1. an accurate, precise and independent positioning estimation process
- 2. a limited endurance
- a low cost technology

TRN-PF / INS qualitative comparison

Outcome

The TBN-PF is:

- a promising independent navigation estimation process for a long range under ice mission

However:

- the bathymetric data collected must be accurate
- a classical glider has not been able to load a low frequency single beam transducer

Perspectives

- Implementation of a 3D dynamic model
- Develop the energy budget study: processing energy consumption

 Incorporate data from magnetometer in the navigation process (update step)

 Test the Terrain Based Navigation in Ligurian Sea

Back up slides

6. Simulations

• Influence of pinging policy on positioning

Gider trajectory

accuracy

 broadcasting a ping requires energy (32 Joules)

ENSIETA

 different simulations
 with different broadcasting policies
 have been run

4 × 10 ⁴	Influence of pi	nging policy on p	ositionning acc	uracy	
3.5				- 3 pings per dive - every - 1 ping per dive - every - 3 pings per dive - every - 1 ping per dive - every - dead reckoning	dive dive 5 dive 5 dive
support 2.5					
al/estimation	ì				
Distance re Distance re				~~~~ ⁴	
0.5		and the second	Ę.		
0	40	60	10000000000000000000000000000000000000) 120	14
	0.07				
tondord	0.06 0.05 10 0.04 0.03 0.03 0.02		X		40
tandard	0.01			1 30	

Simulation #	Pinging policy	Time needed to "converge"	Number of pings until convergence	Mean distance to real position	Standard deviation distance to real position
simulation 1	3 pings / every dive	5 hours	21	892 m	968 m
simulation 2	1 ping / every dive	10 hours	14	1185 m	1474 m
simulation 3	3 pings / every 5 dive	23 hours	21	2425 m	2344 m
simulation 4	1 ping / every 5 dive	48 hours	13	2076 m	2150 m

 Low confidence on depth measurements => more significant weight given to the dead reckoning

