Towards a better understanding of high latitudes in the climate system

- + 1 R + MAT -

Camille LIQUE Laboratoire d'Océanographie Physique et Spatiale IFREMER, Brest, France camille.lique@ifremer.fr

The Arctic in transformation

- The polar regions, and the Arctic in particular, are undergoing some of the fastest changes on the planet in response to climate change
- All the components of the Arctic are affected (ocean, atmosphere, cryosphere, land), with large impacts on the ecosystems

The Arctic in transformation

Large uncertainty on future changes in the Arctic remains, that translates into uncertainty on the climatic, economic, political, and social impacts

This is due to:

(a) a lack of understanding of the key processes setting up the physical ocean and sea ice conditions in the Arctic

(b) a poor representation of these key processes in state-of-the-art Earth System Models

Part of these missing processes corresponds to ocean-sea ice interactions occuring at small scales, particularly in the Marginal Ice Zone

3 examples in the following:

- Eddy sea ice interactions
- Sea ice leads and break up signature on the mixed layer dynamics
- Signature of the sea ice melt on the surface layer

Satellite observations (Terra-MODIS) - Beaufort Sea

Ocean-sea ice interaction at small scales – mesoscale eddies

- At the pan-Arctic scale, sea ice vorticity carries the signature of the atmoshere and the ocean mesoscale eddies (specially in summer, when concentration are below 80% and the rheology gets negligible)
- With possible impacts on the evolution of the sea ice conditions

Data from CREGI2 simulation @3-4km resolution; PhD thesis of A. Cassianides 2023

Ocean-sea ice interaction at small scales – mixed layer dynamics

In the mixed layer, sea ice leads promote heterogeneity, but sea ice friction dissipates turbulence

Snapshot for June 23rd 2003, data from SEDNA @ 800m resolution

Ocean-sea ice interaction at small scales – sea ice melt in the MIZ

In nature, the signature of sea ice melt is often a thin (less than 10m) surface layer of freshwater ... but it remains poorly observed (and not captured by models!)

- Observational effort in the MIZ north of Svalbard: Deployments of drifters + 10 Argo floats (collaboration with the Polar Argo Mission to adapt the floats) + improvement of the retrieval algorithms for SSS (eg SMOS) and SSH (eg SWOT) in the MIZ.
- Obj: Disentangle the different processes at play (eddies, tides, change of stratification. ...)

Synergies between the Arctic and Antarctic science communities

- Understanding the changes in the polar regions requires to consider all the components alltogether (ocean, atmosphere, sea ice, ice sheet)
- There is also a growing recognition that similar processes are at play in both poles, despite an historical disconnection between the communities
 - > A pledge of the French polar science community for a unified polar program
 > Efforts (incl. as part of WCRP) to bring the bipolar community together

