46th Session of the World Climate Research Programme Joint Scientific Committee

# **Partnership with the Global Carbon Project**

Pierre Friedlingstein, Pep Canadell



Norld Climate Research Programme









Research. Innovation. Sustainability.

GLOBAL

CARBON project

In the 1990s, GCTE (terrestrial), JGOFS (global oceans), etc. were IGBP projects with carbon research. Not much atmospheric carbon research.





IGBP saw the need to coordinate carbon among projects and start framing a possible new carbon project in late 1990s.

IGBP, with WCRP, IHDP and Diversitas, pushes for a new global research partnership: The Earth System Science Partnership, established in 2001.







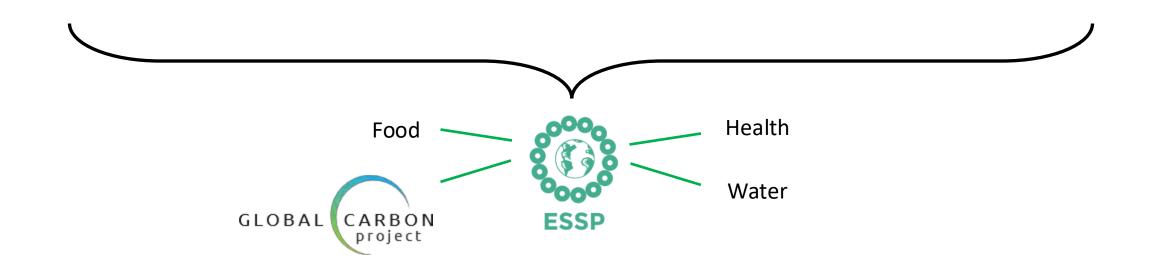








ESSP establishes the Global Carbon Project in 2001, along with projects on water, food, and health (which no longer exist). The GCP had three co-chairs, Mike Raupach (IGBP), Oran Young (IHDP) and Bob Dickinson (WCRP).







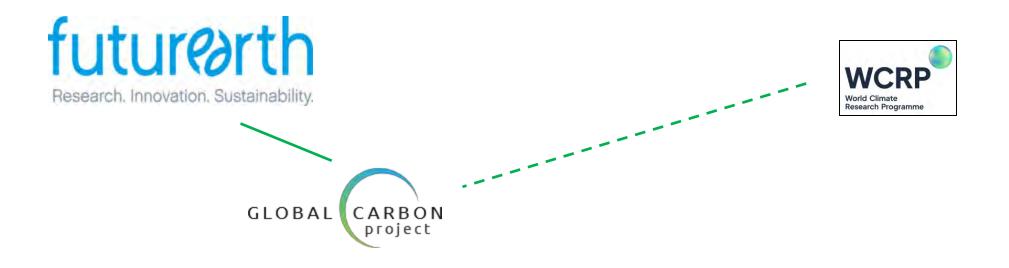






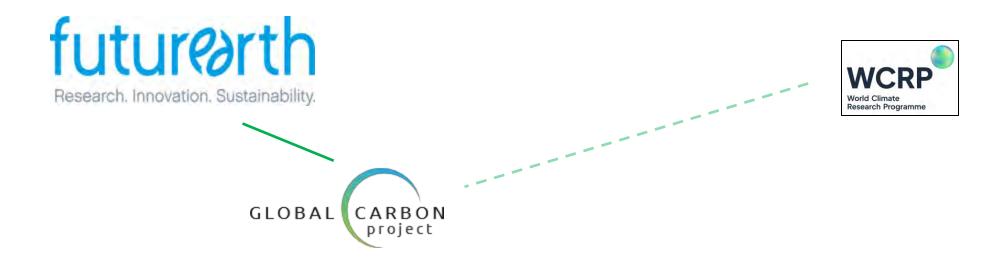

ESSP dissolves in 2012 (and with it IGBP, IHDP and Diversitas) to establish Future Earth, with a broader focus on global sustainability and science for action. WCRP remains but don't join FE. The GCP is transferred to FE.









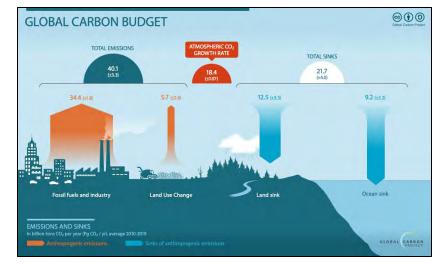

WCRP and the GCP sign a Scientific Partnership in 2017, recognizing their complementary scientific interests.



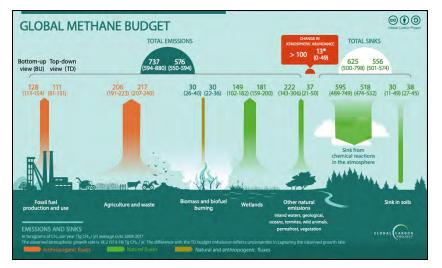


WCRP-GCP partnership ended in 2022. In 2024, WCRP reaffirms the commitment to continuing the partnership between WCRP and the Global Carbon Project.

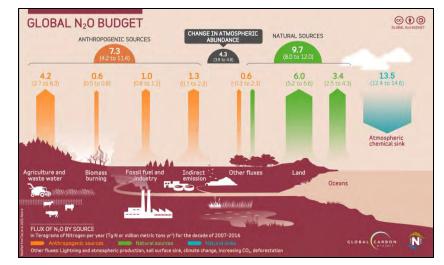





- Scientific Steering Committee (12-15 members), and a big team of Activity Leaders who are the ones running the GCP research activities, which focus on tangible outcomes/products.
- GCP activities are volunteer-based, involving leadership and coordination of research community (hundreds of individual contributions).
- Building on national/EU funded projects, international coordination, support from host institutions, and volunteer work.
- There is an international GCP project coordination office (Canberra-AU) and three activity support offices (Exeter-UK-Carbon, Stanford-US-CH<sub>4</sub>, Boston-US-N<sub>2</sub>O); two regional/national GCP offices (Tsukuba-Japan and Seoul-Korea) all with some (limited) baseline funding.

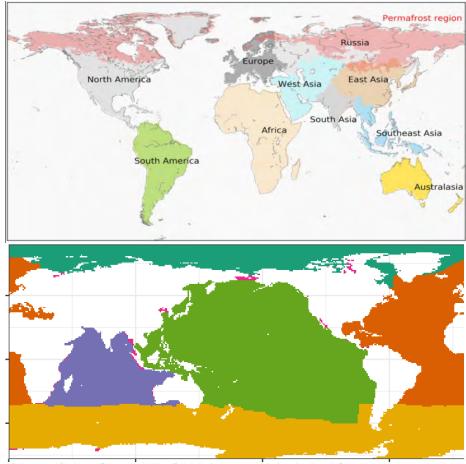

# **Global GHG Budgets**




### CO<sub>2</sub> – annual (19 published reports)



### $CH_4 \sim 3$ years (2 published reports)

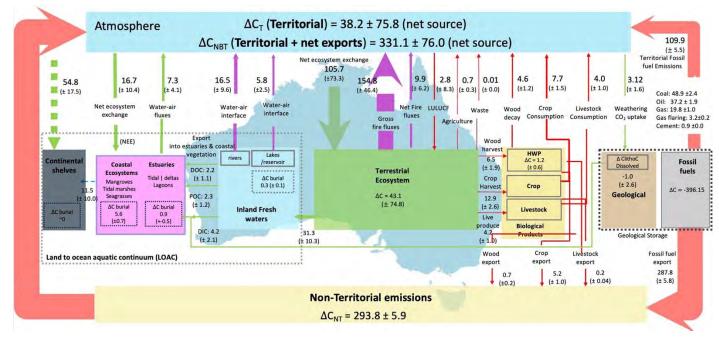



### $N_2O \sim 3$ years (2 published reports)



### REgional Carbon Cycle Assessment and Processes GLOBAL (RECCAP)

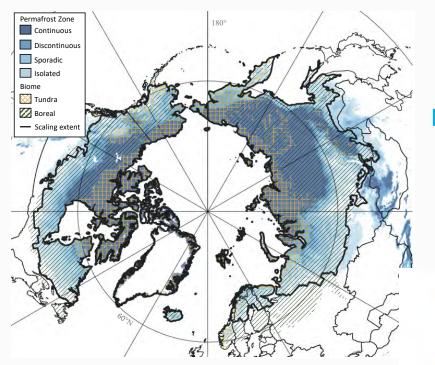
### RECCAP-2 (ending 2025) 20 Regional Budgets




Regional Carbon Cycle Assessment and Processes - 2 AGU Journals Special Collections | First published: 16 August 2022 | Last updated: 17 April 2025



### RECCAP-3 (starting 2026)

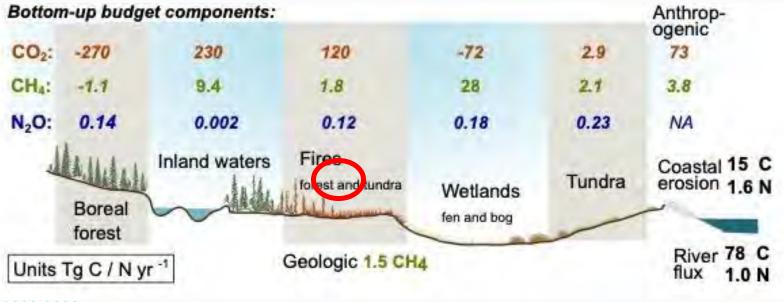

### Focus on National GHG Budgets & Regions of Special Interest



Canadell et al., 2025

CARBON

project






# Permafrost Region GHG Budgets GLOBAL

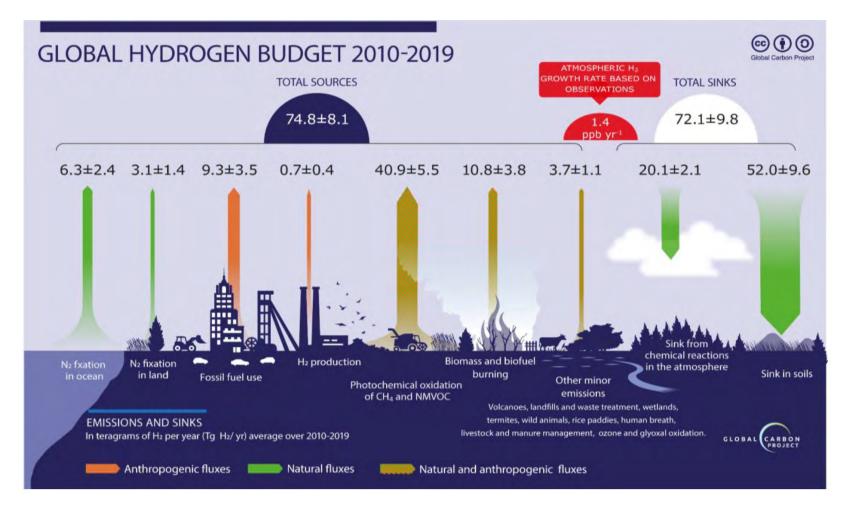
Regions of special interest in the

Regional Carbon Cycle Assessment and Processes (RECCAP2)



2000-2020

Ramage et al. 2024, GBC; Hugelius et al. 2024, GBC


CARBON

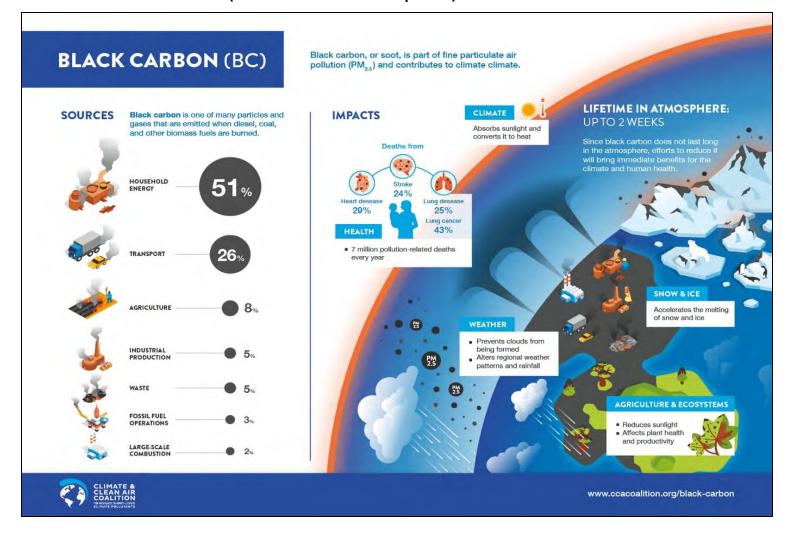
project

# **Global Hydrogen Budget**








Ouyang, Jackson et al., in review

# **Global Black Carbon Budget**





- under development -(Lead: Rona Thompson)



# **High Impact Papers**

Global Methane Budget 2000-2020

Marielle Saunois<sup>1</sup>, Adrien Martinez<sup>1</sup>, Benjamin Poulter<sup>2</sup>, Zhen Zhang<sup>3,4</sup>, Peter A. Raymond<sup>5</sup>.

Pierre Regnier<sup>6</sup>, Josep G. Canadell<sup>7</sup>, Robert B. Jackson<sup>8</sup>, Prabir K. Patra<sup>9,10</sup>, Philippe Bousquet<sup>1</sup>,

Philippe Ciais<sup>1</sup>, Edward J. Dlugokencky<sup>11</sup>, Xin Lan<sup>11,12</sup>, George H. Allen<sup>13</sup>, David Bastviken<sup>14</sup>,

David J. Beerling<sup>15</sup>, Dmitry A. Belikov<sup>16</sup>, Donald R. Blake<sup>17</sup>, Simona Castaldi<sup>18</sup>, Monica Crippa<sup>19</sup>,

Bridget R. Deemer<sup>20</sup>, Fraser Dennison<sup>21</sup>, Giuseppe Etiope<sup>22,23</sup>, Nicola Gednev<sup>24</sup>

Lena Höglund-Isaksson<sup>25</sup>, Meredith A, Holgerson<sup>26</sup>, Peter O, Hopcroft<sup>27</sup>, Gustaf Hugelius<sup>28</sup>

Akihiko Ito29, Atul K. Jain30, Rajesh Janardanan31, Matthew S. Johnson32, Thomas Kleinen33

Paul B. Krummel<sup>21</sup>, Ronny Lauerwald<sup>34</sup>, Tingting Li<sup>35</sup>, Xiangyu Liu<sup>36</sup>, Kyle C. McDonald<sup>37</sup>.

Joe R. Melton<sup>38</sup>, Jens Mühle<sup>39</sup>, Jurek Müller<sup>40</sup>, Fabiola Murguia-Flores<sup>41</sup>, Yosuke Niwa<sup>31,42</sup>,

Sergio Noce43, Shufen Pan44, Robert J. Parker45, Changhui Peng46,47, Michel Ramonet1,

William J. Riley48, Gerard Rocher-Ros49, Judith A. Rosentreter50, Motoki Sasakawa31, Arjo Segers51,

Steven J. Smith<sup>52,53</sup>, Emily H. Stanley<sup>54</sup>, Joël Thanwerdas<sup>55,a</sup>, Hanqin Tian<sup>56</sup>, Aki Tsuruta<sup>57</sup>

Francesco N. Tubiello58, Thomas S. Weber59, Guido R. van der Werf60, Douglas E. J. Worthy61, Yi Xi<sup>1</sup>,

Yukio Yoshida<sup>31</sup>, Wenxin Zhang<sup>62,63</sup>, Bo Zheng<sup>64,65</sup>, Qing Zhu<sup>48</sup>, Qiuan Zhu<sup>66</sup>, and Qianlai Zhuang<sup>36</sup>



Earth Syst. Sci. Dats. 17, 965–1039, 2025 https://doi.org/10.5194/osco-17.965-2025 @ Author(s) 2025. This work is distributed under the Creative Commons Atmibution 4.0 Licensia. Science Data

#### Global Carbon Budget 2024

Pierre Friedlingstein<sup>1,2</sup>, Michael O'Sullivan<sup>1</sup>, Matthew W. Jones<sup>3</sup>, Robbie M. Andrew<sup>4</sup>, Jodith Hauek<sup>5,6</sup>, Peter Landschützer7, Corinne Le Quéré3, Hongmei Li89, Ingrid T. Luijkx19, Are Olsen11, Glen P. Peters<sup>4</sup>, Wouter Peters<sup>10,13</sup>, Julia Pongratz<sup>14,9</sup>, Clemens Schwingshackl<sup>14</sup>, Stephen Sitch<sup>1</sup> Josep G. Canadell<sup>15</sup>, Philippe Ciais<sup>16</sup>, Robert B. Jackson<sup>17,18</sup>, Simone R. Alin<sup>19</sup>, Almut Arneth<sup>20</sup>, Vivek Arora21, Nicholas R. Bates22, Meike Becker11.12, Nicolas Bellouin23, Carla E. Berghoff24, Henry C. Bittig25, Laurent Bopp2, Patricia Cadule2, Katie Campbell26, Matthew A. Chamberlain27, Naveen Chandra<sup>28</sup>, Frédéric Chevallier<sup>16</sup>, Louise P. Chini<sup>20</sup>, Thomas Colligan<sup>30</sup>, Jeanne Decayeus<sup>31</sup> Laique M. Djeutchouang<sup>32,33</sup>, Xinyu Dou<sup>34</sup>, Carolina Duran Rojas<sup>1</sup>, Kazutaka Enyo<sup>35</sup>, Wiley Evans<sup>26</sup>, Amanda R. Fay<sup>36</sup>, Richard A. Feely<sup>19</sup>, Daniel J. Ford<sup>1</sup>, Adrianna Foster<sup>37</sup>, Thomas Gasser<sup>38</sup>, Marion Gehlen<sup>16</sup>, Thanos Gkritzalis<sup>7</sup>, Giacomo Grassi<sup>10</sup>, Luke Gregor<sup>40</sup>, Nicolas Gruber<sup>40</sup> Özgür Gürses<sup>5</sup>, Ian Harris<sup>41</sup>, Matthew Hefner<sup>42,43</sup>, Jens Heinke<sup>44</sup>, George C, Hurtt<sup>29</sup>, Yosuke Iida<sup>35</sup> Tatiana Ilyina<sup>45,859</sup>, Andrew R. Jacobson<sup>46,47</sup>, Atul K. Jain<sup>48</sup>, Tereza Jarniková<sup>49</sup>, Annika Jersild<sup>30</sup>, Fei Jiang<sup>10</sup>, Zhe Jin<sup>51,52</sup>, Etsushi Kato<sup>53</sup>, Ralph F. Keeling<sup>54</sup>, Kees Klein Goldewijk<sup>55</sup> Jürgen Knauer<sup>36,15</sup>, Jan Ivar Korsbakken<sup>4</sup>, Xin Lan<sup>46,47</sup>, Siv K. Lauvset<sup>37,12</sup>, Nathalie Lefevre<sup>5</sup> Zhu Liu<sup>34</sup>, Junjie Liu<sup>59,60</sup>, Lei Ma<sup>59</sup>, Shamil Maksyutov<sup>61</sup>, Gregg Marland<sup>42,43</sup>, Nicolas Mayot<sup>62</sup>, Patrick C. McGuire<sup>63</sup>, Nicolas Metzl<sup>58</sup>, Natalie M. Monacci<sup>64</sup>, Krie J. Morgan<sup>54</sup>, Shin-Ichiro Nakaoka<sup>61</sup>, Craig Neill<sup>27</sup>, Yosuke Niwa<sup>61</sup>, Tobias Nützel<sup>14</sup>, Lea Olivier<sup>5,14</sup>, Tsumeo Ono<sup>65</sup>, Paul J, Palmer<sup>66,67</sup>, Denis Pierrot68, Zhangcal Qin69, Laure Resplandy70,71, Alizée Roobaert7, Thais M. Rosan1, Christian Rödenbeck72, Jörg Schwinger57.02, T. Luke Smallman56.67, Stephen M. Smith73, Reinel Sospedra-Alfonso<sup>21</sup>, Tobias Steinhoff<sup>74,57</sup>, Qing Sun<sup>75</sup>, Adrienne J. Sutton<sup>19</sup>, Roland Séférian<sup>31</sup>, Shintaro Takao61, Hiroaki Tatebe76.77, Hangin Tian78, Bronte Tilbrook27.79, Olivier Torres2, Etienne Tourigny<sup>80</sup>, Hiroyuki Tsujino<sup>81</sup>, Francesco Tubiello<sup>82</sup>, Guido van der Werf<sup>10</sup>, Rik Wanninkhof<sup>68</sup>, Xuhai Waog<sup>52</sup>, Dongxu Yang<sup>53</sup>, Xiaojuan Yang<sup>54</sup>, Zhen Yu<sup>85</sup>, Wenping Yuan<sup>86</sup>, Xu Yue<sup>87</sup>, Sönke Zaehle<sup>71</sup>, Ning Zeng<sup>58,30</sup>, and Jiye Zeng<sup>61</sup>

Earth Syst. Sci. Data, 17, 1873–1958, 2025 https://doi.org/10.5194/essd-17-1878-2025 Matthor(s) 2025. This work is distributed under the Creative Commons Attribution 4.0 License.

#### Science Data

Earth Syst. Sci. Data. 16, 2543–2604, 2024 https://doi.org/10.5184/assd-16-2543-2024 # Author(s) 2024. This work is distributed under the Creative Commons Attribution 4.0 License. Science Data

#### Global nitrous oxide budget (1980–2020)

Hanqin Tian<sup>1,2</sup>, Naiqing Pan<sup>1</sup>, Rona L. Thompson<sup>3</sup>, Josep G. Canadell<sup>4</sup>, Parvadha Suntharalingam<sup>4</sup>, Pierre Regnier<sup>6</sup>, Eric A. Davidson<sup>7</sup>, Michael Prather<sup>3</sup>, Philippe Cini<sup>9</sup>, Marilena Muntaral<sup>10</sup>, Shufer Pan<sup>11,1</sup>, Wiftreid Winiwarte<sup>12,13</sup>, Sönke Zachle<sup>4</sup>, Feng Zhou<sup>13</sup>, Robert B. Jackson<sup>16,17</sup>,
Hermann W. Bangel<sup>8</sup>, Sarah Berthet<sup>19</sup>, Zihao Bian<sup>20</sup>, Daniele Bianchi<sup>21</sup>, Alexander F. Bouwman<sup>22</sup>, Erik T. Buitenhuis<sup>6</sup>, Geoffrey Duton<sup>23,33</sup>, Minpeng Hu<sup>4</sup>, Akhiko Ito<sup>25,26</sup>, Atui K. Jala<sup>17</sup>,
Aurich Jettsch-Thöumer<sup>53,29</sup>, Fortunat Jose<sup>22,29</sup>, Sian Kou-Giesbrecht<sup>10,21</sup>, Paul B. Krummel<sup>22</sup>,
Xin Lan<sup>23,33</sup>, Angela Landolfi<sup>31,18</sup>, Ronny Lauerwald<sup>35</sup>, Ya Ll<sup>26</sup>, Chaoqun Lu<sup>37</sup>, Taylor Maavara<sup>38</sup>,
Manfredi Manizza<sup>39</sup>, Dylan B. Millet<sup>10</sup>, Jens Mühle<sup>39</sup>, Prabir K. Patar<sup>41,42,43</sup>, Glen P. Peters<sup>44</sup>,
Xiaoyu Qin<sup>56</sup>, Peter Raymond<sup>45</sup>, Lauer Respland<sup>46</sup>, Judith A. Rosentret<sup>er7,48</sup>, Hao Shi<sup>56</sup>,
Qing Sun<sup>32,29</sup>, Daniele Tonina<sup>49</sup>, Francesco N, Tubiello<sup>50</sup>, Guido R. van der Werf<sup>51</sup>, Nicolas Vuichard<sup>9</sup>,
Jonjie Wang<sup>22</sup>, Kelley C, Wells<sup>40</sup>, Luke M. Western<sup>23,22</sup>, Chris Wilso<sup>33,34</sup>, Jia Yang<sup>55</sup>, Yuanzhi Yao<sup>56</sup>,

#### comment 3 merces

### Carbon analytics for net-zero emissions sustainable cities

Consensus on carbon accounting approaches at city-level is lacking and analytic frameworks to systematically link carbon mitigation with the Sustainable Development Goals are limited. A new accounting approach anchored upon key physical provisioning systems can help to address these knowledge gaps and facilitate urban transitions.

Anu Ramaswami, Kangkang Tong, Josep G. Canadell, Robert B. Jackson, Eleanor (Kellie) Stokes, Shobhakar Dhakal, Mario Finch, Peraphan Jittrapirom, Neelam Singh, Yoshiki Yamagata, Eli Yewdall, Leehi Yona and Karen C. Seto

#### Article

## A comprehensive quantification of global nitrous oxide sources and sinks

https://doi.org/10.1038/u41586-020-2780-0 Rucsived: 28 December 2019 Accepted: 14 August 2020 Published online: 7 October 2020 \* Check for updates

Hangin Tian<sup>15</sup>, Rongting Xu<sup>3</sup>, Josep D. Canadell<sup>1</sup>, Rona L. Thompson<sup>1</sup>, Wilfried Winiwarte<sup>AA</sup> Parvedha Suntharelingam<sup>1</sup>, Eric A. Devideon<sup>1</sup>, Philippe Cials<sup>1</sup>, Robert B. Jackson<sup>1001</sup>, Greet Janasan-Maenhour<sup>104</sup>, Wilchael J. Pathat<sup>104</sup>, Pierra Regins<sup>1067</sup>, Naliging Pan<sup>104</sup>, Shufen Pan<sup>1</sup>, Glam P. Patres<sup>10</sup>, Hao Shi<sup>1</sup>, Francosco N. Tubiello<sup>105</sup>, Sinke Zaehle<sup>11</sup>, Fong Zhou<sup>21</sup>, Almut Arneth<sup>17</sup>, Ginma Battagla<sup>107</sup>, Bartyn Bethel<sup>11</sup>, Laurent Bogri<sup>17</sup>, Macamel F. Bouwman<sup>1031</sup>, Edward Diugokenciev<sup>11</sup>, James W. Elkina<sup>11</sup>, Bradley D. Eyre<sup>18</sup>, Bogline FL<sup>106</sup>, Biratlay Hall<sup>11</sup>, Adhikho tian<sup>15</sup>, Totina Josef<sup>11</sup>, Janul<sup>104</sup>, Margia Landoll<sup>1047</sup>, Ghore R. B. Caurelle<sup>18</sup>, Romy Laurewald<sup>1058</sup>, Wei Ll<sup>24</sup>, Sebastian Liener<sup>17</sup>, Tarjor Maavara<sup>17</sup>, Micheel MacLood<sup>11</sup>, Oyalan M. Miller<sup>11</sup>, Stefen Diln<sup>17</sup>, Janul R. Nurmel<sup>117</sup>, Ronal G. Andoll<sup>107</sup>, Peter A. Raymond<sup>10</sup>, Daviel J. huib<sup>11</sup>, Guida R. van der Wert<sup>18</sup>, Nicolas Yuichard<sup>11</sup>, Jany F. Weiss<sup>26</sup>, Rellery C. Weills<sup>11</sup>, Chris Wille<sup>11</sup>, Sin Loga S. Vanzhi<sup>11</sup>, Sonal C. Profile<sup>11</sup>, Peter A. Raymond<sup>10</sup>, Daniel J. huib<sup>11</sup>, Guida R. van der Wert<sup>18</sup>, Nicolas Yuichard<sup>1</sup>, Junje Wang<sup>17</sup>, Ray F. Weiss<sup>26</sup>,

#### climate change

ARTICLES

Check for updates

### Temporary reduction in daily global CO<sub>2</sub> emissions during the COVID-19 forced confinement

Corinne Le Quéré <sup>© 1,2</sup><sup>™</sup>, Robert B. Jackson <sup>© 3,4,5</sup>, Matthew W. Jones <sup>© 1,2</sup>, Adam J. P. Smith<sup>1,2</sup>, Sam Abernethy <sup>© 3,6</sup>, Robbie M. Andrew <sup>© 7</sup>, Anthony J. De-Gol<sup>1,2</sup>, David R. Willis<sup>1,2</sup>, Yuli Shan<sup>8</sup>, Josep G. Canadell <sup>© 9</sup>, Pierre Friedlingstein <sup>© 10,11</sup>, Felix Creutzig <sup>© 12,13</sup> and Glen P. Peters <sup>© 7</sup>

# **Contributions to High-Impact Reports**



Handbook 2023

GLOBAL

CARBON project

# Dissemination

GLOBAL CARBON



Side events and press conferences at UN COPs for several years.

# Dissemination

ipcc

GLOBAL CARBON



Side events and press conferences at UN COPs for several years. Large international media coverage GCB 2024 covered in >1000 outlets (US, EU, UK, India, Australia, China, ...)

### News

= The New York Times

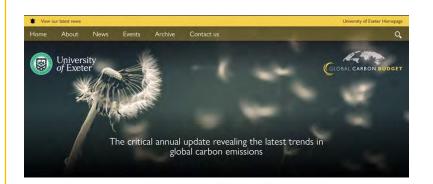
SUBSCRIBE FOR E0.50/WEEK


#### Carbon Dioxide Emissions Rebounded Sharply After Pandemic Dip

Global emissions are now less than 1 percent below their previous high in 2019, suggesting that any climate impact from the pandemic was fleeting.



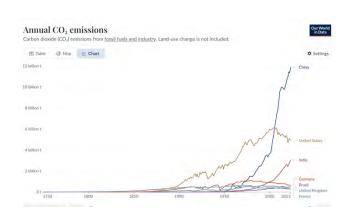
# Dissemination


GLOBAL CARBON



Side events and press conferences at UN COPs for several years Large international media coverage GCB 2024 covered in >1000 outlets (US, EU, UK, India, Australia, China, ...)

### Data/figures/slides available via


- Our World in Data (top 10 chart, >1M views in 2024)
- GCB website, Carbon Atlas, ICOS



https://globalcarbonbudget.org/carbonbudget



www.globalcarbonatlas.org



https://ourworldindata.org/



GLOBAL



GLOBAL

### Many natural links between GCP and WCRP CPs and LHAs

- ESMO: Global C cycle modelling and obs.
- SLC : TCRE, Tipping points
- CLIVAR : Ocean carbon/heat
- GEWEX : land carbon/water, SIF-MIP
- APARC : CH4, black C
- CLIC : permafrost C
- ...

# **Thank You**



World Climate **Research Programme** 

www.wcrp-climate.org





