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Activities organised around four questions: 

1. What role does convection play in cloud feedbacks? 

2. What controls the position, strength and variability of storm tracks?

3. What controls the position, strength and variability of the tropical rain belts?

4. What role does convective aggregation play in climate? 

In addition to the key question of the climate sensitivity, which we addressed through two 

community assessments: (i) Climate Sensitivity; (ii) Aerosol Forcing.

Some basic reminders about the Grand Challenge:

Organised in three phases: 

1. 2012-2015:  Definitional

2. 2016-2020:  Mature

3. 2021-2022:  Wrap-up — we’re wrapping up.

Bony, Sandrine; Stevens, Bjorn; Frierson, Dargan M. W.; Jakob, Christian; Kageyama, Masa; Pincus, 
Robert; Shepherd, Theodore G.; Sherwood, Steven C.; Siebesma, A. Pier; Sobel,  Adam H.; Watanabe, 
Masahiro;  Webb, Mark J., cited 377 times.



Our “lighthouses”
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Abstract We assess evidence relevant to Earth's equilibrium climate sensitivity per doubling of
atmospheric CO2, characterized by an effective sensitivity S. This evidence includes feedback process
understanding, the historical climate record, and the paleoclimate record. An S value lower than 2 K is
difficult to reconcile with any of the three lines of evidence. The amount of cooling during the Last
Glacial Maximum provides strong evidence against values of S greater than 4.5 K. Other lines of
evidence in combination also show that this is relatively unlikely. We use a Bayesian approach to
produce a probability density function (PDF) for S given all the evidence, including tests of robustness
to difficult‐to‐quantify uncertainties and different priors. The 66% range is 2.6–3.9 K for our Baseline
calculation and remains within 2.3–4.5 K under the robustness tests; corresponding 5–95% ranges are
2.3–4.7 K, bounded by 2.0–5.7 K (although such high‐confidence ranges should be regarded more
cautiously). This indicates a stronger constraint on S than reported in past assessments, by lifting the
low end of the range. This narrowing occurs because the three lines of evidence agree and are
judged to be largely independent and because of greater confidence in understanding feedback processes
and in combining evidence. We identify promising avenues for further narrowing the range in S, in
particular using comprehensive models and process understanding to address limitations in the
traditional forcing‐feedback paradigm for interpreting past changes.

Plain Language Summary Earth's global “climate sensitivity” is a fundamental quantitative
measure of the susceptibility of Earth's climate to human influence. A landmark report in 1979
concluded that it probably lies between 1.5°C and 4.5°C per doubling of atmospheric carbon dioxide,
assuming that other influences on climate remain unchanged. In the 40 years since, it has appeared difficult
to reduce this uncertainty range. In this report we thoroughly assess all lines of evidence including some
new developments. We find that a large volume of consistent evidence now points to a more confident view
of a climate sensitivity near the middle or upper part of this range. In particular, it now appears
extremely unlikely that the climate sensitivity could be low enough to avoid substantial climate change (well
in excess of 2°C warming) under a high‐emission future scenario. We remain unable to rule out that the
sensitivity could be above 4.5°C per doubling of carbon dioxide levels, although this is not likely. Continued
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Key Points:
• We assess evidence relevant to

Earth's climate sensitivity S:
feedback process understanding and
the historical and paleoclimate
records

• All three lines of evidence are
difficult to reconcile with S < 2 K,
while paleo evidence provides the
strongest case against S > 4.5 K

• A Bayesian calculation finds a
66% range of 2.6–3.9 K, which
remains within the bounds 2.3–4.5 K
under plausible robustness tests
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Abstract Aerosols interact with radiation and clouds. Substantial progress made over the past 40 years
in observing, understanding, and modeling these processes helped quantify the imbalance in the Earth's
radiation budget caused by anthropogenic aerosols, called aerosol radiative forcing, but uncertainties
remain large. This review provides a new range of aerosol radiative forcing over the industrial era based
on multiple, traceable, and arguable lines of evidence, including modeling approaches, theoretical
considerations, and observations. Improved understanding of aerosol absorption and the causes of trends
in surface radiative fluxes constrain the forcing from aerosol-radiation interactions. A robust theoretical
foundation and convincing evidence constrain the forcing caused by aerosol-driven increases in liquid
cloud droplet number concentration. However, the influence of anthropogenic aerosols on cloud liquid
water content and cloud fraction is less clear, and the influence on mixed-phase and ice clouds remains
poorly constrained. Observed changes in surface temperature and radiative fluxes provide additional
constraints. These multiple lines of evidence lead to a 68% confidence interval for the total aerosol effective
radiative forcing of -1.6 to -0.6 W m−2, or -2.0 to -0.4 W m−2 with a 90% likelihood. Those intervals are
of similar width to the last Intergovernmental Panel on Climate Change assessment but shifted toward
more negative values. The uncertainty will narrow in the future by continuing to critically combine
multiple lines of evidence, especially those addressing industrial-era changes in aerosol sources and
aerosol effects on liquid cloud amount and on ice clouds.

Plain Language Summary Human activities emit into the atmosphere small liquid and solid
particles called aerosols. Those aerosols change the energy budget of the Earth and trigger climate changes,
by scattering and absorbing solar and terrestrial radiation and playing important roles in the formation of
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Key Points:
• An assessment of multiple lines of

evidence supported by a conceptual
model provides ranges for aerosol
radiative forcing of climate change

• Aerosol effective radiative forcing
is assessed to be between -1.6
and -0.6 W m−2 at the 16–84%
confidence level

• Although key uncertainties remain,
new ways of using observations
provide stronger constraints for
models
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• The assessments brought together multiple lines of evidence around new approaches 
to meaningfully, and for the first time, narrow the uncertainty surrounding central 
quantities of climate science.

• EUREC4A (see the film) developed and exploited new techniques and experimental 
strategies to quantify how clouds couple to circulation in ways that were previously 
not possible, and is guiding the development a new generation of earth-system models 
and observations.

https://dai.ly/x7wxqsz


What about the four questions? 

Question 1:  What role does convection play in cloud feedbacks? 

Question 2:  What controls the position, strength and variability of storm tracks?

Question 3:  What controls the position, strength and variability of the tropical rain belts?

Question 4:  What role does convective aggregation play in climate? 

• Communities (from workshops, conference sessions, schools, etc) have developed around each of these, supporting and initiating 
model intercomparison activities, field studies, research programmes, and individual research. 

• Some definitive answers (EUREC4A, but also from modelling) are emerging for Q1.

• Understanding Q4 is seen as central to further progress on Q1 & Q3, is a major motivation for new approaches to modelling 
(SR-ESMs), and is motivating a new generation of field studies (e.g., TOOC).

• Due to the pandemic, and given the previous point, we have decided to forgo a stock taking in favor of a transition which pivots 
about the question of convective aggregation (Q4), as it appears best poised to animate diverse WCRP activities (Lighthouses on 
Digital Earth’s, GEWEX).
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Why Q4 (convective aggregation) is interesting for WCRP

• Convection organization (not just for shallow convection) strongly influences Earth’s energy budget.

• Precipitation doesn’t form in clouds, but cloud clusters.  

• Hydrological extremes are often expressions of convective clustering (deep and shallow alike).

• Convective aggregation determines how effectively clouds coupled to circulation.

• Convection aggregates less over land than over the ocean.

• CMIP (like) models are built on the assumption that it doesn’t matter.

Q4 could serve as a lightning rod for activities in GEWEX



Why WCRP is interesting for efforts to understand convective aggregation

• Its name.

• Its ability to bring people together.

• Its international cachet (particularly in countries with less scientific infrastructure).

• Its organizational support.

Mich Rixen: a hidden hero of our grand challenge …



How could WCRP have been more helpful for our grand challenge?

WCRP’s blessings (and Mich’s efforts) proved very beneficial for the success of our grand challenge.

Slide from JSC-39



Blessings are fine …

but people need stories.


