WCRP Grand Challenge Biogeochemical Cycles and Climate Change

coordinated by:

TATIANA ILYINA

PIERRE FRIEDLINGSTEIN

Max Planck Institute for Meteorology

University of Exeter

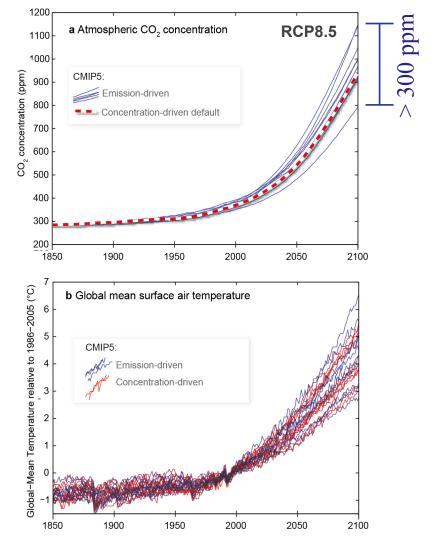
with contributions from: G. Brasseur, V. Brovkin, P. Canadell, D. Carlson, P. Ciais, B. Collins, N. Gruber, N. Harris, M. Hegglin, G. Hugelius, C. Jones, C. LeQuéré, J. Marotzke, V. Ramaswamy, C. Sabine

The Grand Challenge

to understand how biogeochemical cycles and feedbacks control GHG concentrations and impact on the climate system

Uncertainty in carbon cycle projections (>300 ppm) is comparable to differences across socio-economic scenarios.

IPCC AR5



AR5 WG1 SPM:

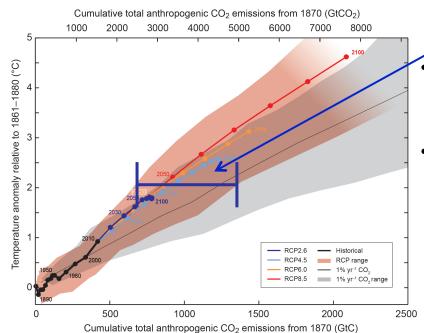
"Based on ESMs, there is high confidence that the feedback between climate and the carbon cycle is positive in the 21st century."

CMIP5

- >40 climate models (AOGCM)
- 10 ESMs (i.e. with BGC components)

The Grand Challenge

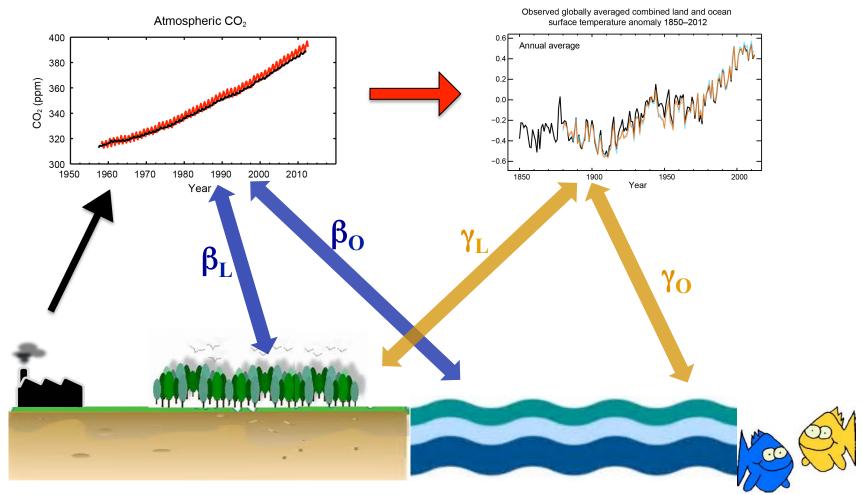
to understand how biogeochemical cycles and feedbacks control GHG concentrations and impact on the climate system


Large uncertainty in CO_2 emissions compatible with a given climate target. Budget for the 2°C target is about 700GtC to 1300GtC. Given 550 GtC emitted so far, that's **15 to 75 years of current emissions**.

IPCC AR5

AR5 WG1 SPM:

"Cumulative total emissions of CO_2 and global mean surface temperature response are approximately linearly related. Any given level of warming is associated with a range of cumulative CO_2 emissions."



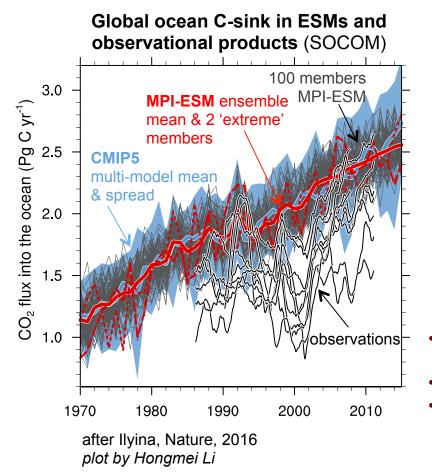
Uncertainty

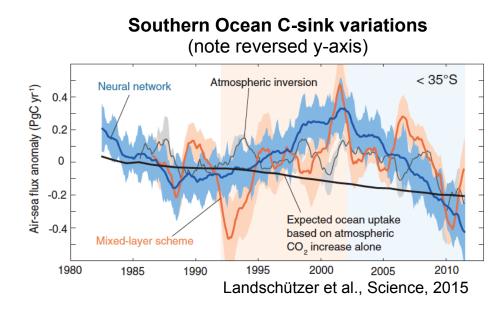
- Carbon feedbacks
 (CO₂ emissions
 → CO₂ concentration)
- Climate feedbacks (CO₂ concentrations
 → climate response)

Carbon cycle feedbacks

- most feedbacks known (or suspected) for decades
- no or little direct observations
- basic or insufficient understanding of processes
- uncertain magnitude

 $\label{eq:back} \begin{array}{l} \beta : \text{concentration carbon cycle feedback} - \textbf{Negative Feedback} \\ \gamma : \text{climate carbon cycle feedback} - \textbf{Positive Feedback} \end{array}$

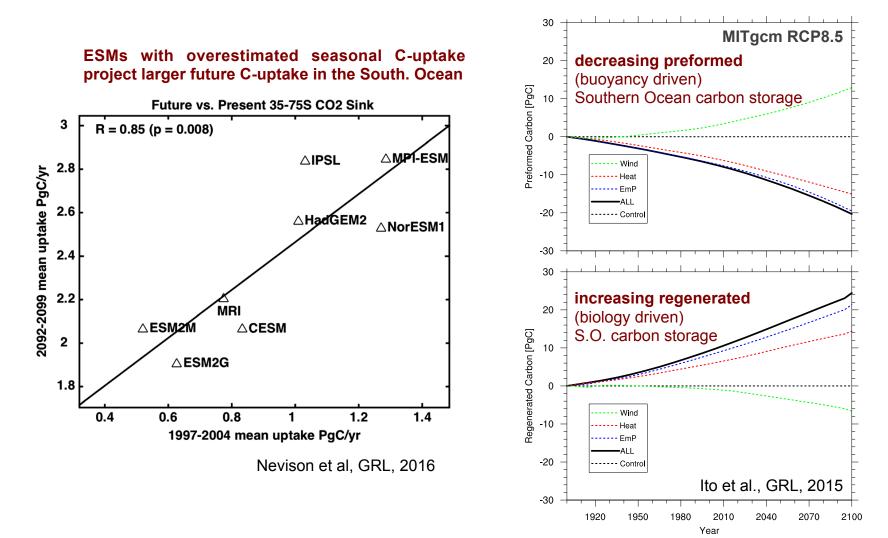

to understand how biogeochemical cycles and feedbacks control GHG concentrations and impact on the climate system


Guiding questions:

- 1. What are the drivers of land and ocean carbon sinks?
- 2. What is the potential for amplification of climate change over the 21st century via climate-biogeochemical feedbacks?
- 3. How do greenhouse gases fluxes from highly vulnerable carbon reservoirs respond to changing climate (including climate extremes and abrupt changes)?

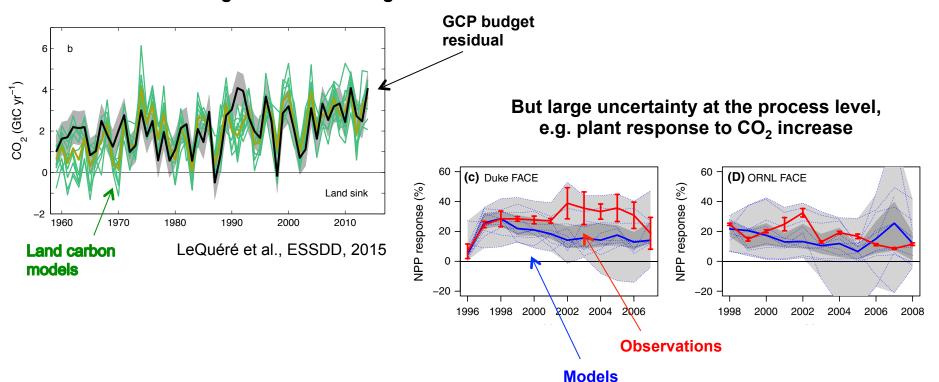
1. What are the drivers of land and ocean carbon sinks?

Ocean: *key mechanisms are identified, but with large uncertainties regarding their strength, regional and multi-year variability*



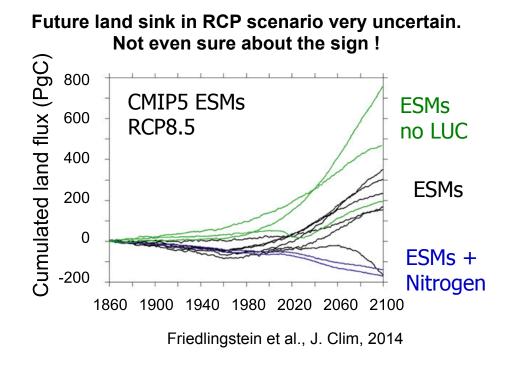
- large spread in observational and modeled estimates of the ocean carbon sink
- poor understanding of origins of variability
- unclear relative contribution of physical vs. biological processes

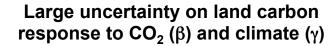
2. What is the potential for amplification of climate change over the 21st century via climate-biogeochemical feedbacks?

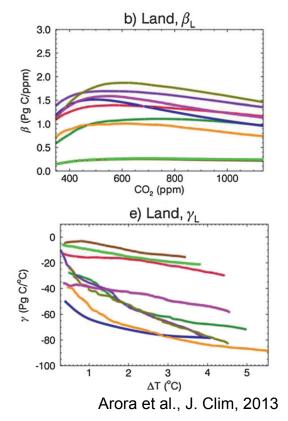

Ocean: How changes in climate, ocean circulation, and biogeochemical mechanisms will affect the ocean's capacity to sequester carbon?

1. What are the drivers of land and ocean carbon sinks?

the main barriers relate to understanding of the actual processes driving the sinks


Fair global agreement between land carbon models and estimate from global carbon budget

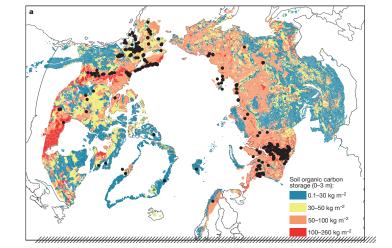


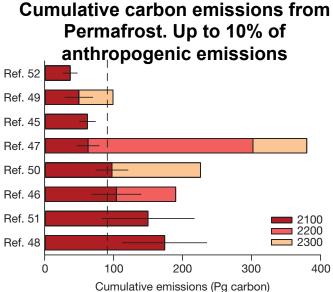

Land:

2. What is the potential for amplification of climate change over the 21st century via climate-biogeochemical feedbacks?

Land: How changes in climate, atmospheric composition, land use will affect the land's capacity to sequester carbon?

3. How do greenhouse gases fluxes from highly vulnerable carbon reservoirs respond to changing climate?


Land: Changes in Arctic soil temperature, or in tropical precipitation can lead to large, irreversible, carbon release from terrestrial ecosystems.


IPCC AR5

AR5 WG1 SPM:

"The release of CO_2 or CH_4 to the atmosphere from thawing permafrost carbon stocks over the 21st century is assessed to be in the range of 50 to 250 GtC for RCP8.5 (*low confidence*)."

Schuur et al., Nature, 2015

The Grand Challenge

Guiding questions:

- 1. What are the drivers of land and ocean carbon sinks?
- 2. What is the potential for amplification of climate change over the 21st century via climate-biogeochemical feedbacks?
- 3. How do greenhouse gases fluxes from highly vulnerable carbon reservoirs respond to changing climate (including climate extremes and abrupt changes)?

Research initiatives:

- I. Process understanding on land (questions 1, 2, 3)
- II. Process understanding in the ocean (questions 1, 2, 3)
- III. Learning from the existing record (question 1)
- IV. Towards improved projections (questions 2, 3)

Research Initiatives

- I. Process understanding on land
 - Quantification of the strength of the CO₂ fertilization, photosynthesis and limitations from nitrogen cycle
 - Quantification of gross carbon fluxes sensitivity to warming and variability (and changes in hydrology)
 - Understanding of ecosystems vulnerability and risk of carbon loss
- II. Process understanding in the ocean
 - Quantification of the strength of the Southern Ocean CO₂ uptake
 - The relative role of physical vs. biological processes
 - Understanding the origins of variability (from seasonal to decadal) of the ocean carbon sink
 - Relationship between anthropogenic carbon and heat uptake

Research Initiatives

- III. Learning from the existing record
 - observational frameworks, models evaluation/benchmarking
 - new emerging constraints
 - from paleorecord to satellite data
- IV. Towards improved projections
 - improved feedback framework (water cycle, regional focus)
 - improved Earth System models
 - ESM re-analysis (physics and biogeochemistry)

Opportunities for rapid progress of this Grand Challenge "Why now ?"

CMIP6

C4MIP

- 1% runs: feedback analysis
- E-driven scenarios: climate change amplification

Deck

- Historical: evaluation
- 1% runs: feedback analysis
- ScenarioMIP
 - C-driven scenarios: C-cycle vulnerability to future climate
- OMIP, LS3MIP, DCPP
 - process understanding and evaluation

Observational networks

- SOCAT and GLODAP
- Argo floats
- New satellite data (e.g. CO₂)
- Flux measurement networks
- process oriented obs.

WCRP projects

CLIVAR, SPARC

Future Earth projects

- GCP
- AIMES, SOLAS, ILEAPS, IMBER
- Knowledge Action Networks

Other GCs

- GC-Cryosphere
- GC-Decadal?

Opportunities for WCRP

ESMs are becoming "standard" tools for the climate community

- CMIP6 will have more than 20 ESMs (CMIP5 had 10 ESMs)
- C4MIP is among the most popular CMIP6 endorsed MIP (along with ScenarioMIP and OMIP)
- IPCC AR6 will "very likely" heavily rely on those simulations for assessment of climate projections, compatible emissions, TCR, TCRE, climate impact on land and marine ecosystems, irreversibility, etc
- Urgent need to have better understanding of key BGC processes and their feedbacks on the climate system.

1st Workshop

Haus Rissen, Hamburg 23-25 November 2016

- Grand Challenge kick-off
- Community engagement
- Refine and update
 Research Initiatives
- Roadmap for research

