An Ensemble Estimation of the Variability of Upper-ocean Heat Content over the Tropical Atlantic Ocean with Multi-Ocean Reanalysis Products

Jieshun Zhu¹, Bohua Huang^{1,2}, and Magdalena A Balmaseda³

¹Center for Ocean-Land-Atmosphere Studies (COLA) ²Department of Atmospheric, Oceanic, and Earth Sciences George Mason University (GMU) ³European Centre for Medium-Range Weather Forecasts (ECMWF)

HCA -- the averaged temperature anomalies in the upper 300m

OUTLINES

- Six ODA products
- The uncertainty of HCA in the current ODAs
- Validation of an Ensemble ODA dataset
 - Leading EOF modes becoming more physically meaningful
 - Against the EOF maximizing signal-to-noise ratio (MSN EOF) (common?)
 - Against AVISO sea level dataset (realistic?)
 - Against PIRATA mooring dataset: five moorings
- Summary

Multiple Ocean Analyses

 Table 1
 Brief summary of ocean state estimation systems

System and institution (reference)	Model and resolution	Method	Data	Period	
ORA-S3, ECMWF, EU (Balmaseda et al. 2008)	HOPE 1X(0.3–1), 29 levels	3D OI with online bias correction	Altimeter (sea level anomalies and global trends), SST, T & S from XBT, CTD, Argo, TAO	1959–2009	
COMBINE-NV ECMWF, EU (Balmaseda et al. 2010)	NEMO 1X(0.3–1) 42 levels	3D-VAR	D-VAR EN3_v2a data set (including ocean station/CTD, XB Buoys, profilers inWOD05, GTSPP and ARGO)		
GODAS, NCEP, USA (Behringer 2005)	MOM3 1X(0.3–1) 40 levels	3D-VAR	SST, T profiles from XBT, CTD, Argo, TAO	1979–2009	
CFSR, NCEP, USA (Saha et al. 2010)	NCEP CFS2 (MOM4 0.5X(0.25–0.5) 40 levels)	Partially coupled data assimilation (3D- VAR for OM)	SST, T &S profiles from XBT, CTD, Argo, TAO	1979–2009	
SODA 2.1.6, UM/ TAMU, USA (Carton and Giese 2008)	POP 0.25X0.4, 40 levels	OI	Altimetry, satellite and in situ SST, T & S profiles from MBT, XBT, CTD, Argo and other float data, TAO and other buoys.	1958–2008	
ECDA, GFDL, USA (Zhang et al. 2007)	GFDL CM2 (MOM4 1X(0.3–1), 50 levels)	Coupled data assimilation (ensemble kalman filter)	SST, T profiles from XBT, CTD, ARGO, TAO & S profiles from CTD, ARGO	1979–2007	

- Different model systems
- Different assimilation schemes
- Slightly different observational inputs

ODA Heat Content Uncertainty

Problems: HCA spreads so significantly among different ODAs in the TA.

Questioning: results based on one ODA

- 1) How realistic is the characteristics of TAV derived from one of these reanalysis products?
- 2) How can we use analyses with this level of uncertainty to explain the physical processes of the TAV?
- 3) How much can we trust the predictions of TAV with dynamical forecast systems initialized from these analyses?

X_{total}=X_{signal}+X_{noise}

X_{signal} --- the interannual (or longer) variance in reality, which shows certain consistency among different reanalysis products due to similar ocean datasets assimilated into them.

X_{noise} --- inherent in each individual product, which is associated with the errors in different atmospheric forcing, different ocean models, different assimilation schemes, and so on.

Claiming: Ensemble average of multiple ODAs is a useful method to improve estimating the changes of HCA.

Heat Content Anomaly

- **Ensemble average** reduces noise effectively
- S/N ratio improves significantly
- Signal exists in all analyses (masked by high internal noise)

4th WCRP International Conference on Reanalyses, 7-11 May 2012, Silver Spring, MD, USA

2ÔE

- Leading EOF patterns
 become physically
 meaningful
 - EOF1- Meridional mode EOF2- Zonal mode

-0.6 -0.5 -0.4 =0.3 -0.2 -0.1 0.1 0.2 0.3 0.4 0.5 0.8 eanalyses, 7-11 May 2012, Silver Spring, MD, USA

0

-2

1980

-3 |Signal/Noise Ratio = 5.25

1985

Prove that the noise in the Ensemble_mean analysis is reduced to an acceptable level.

Vs. 5.11

1995

1990

4th WCRP International Conference on Reanalyses, 7-11 May 2012, Silver Spring, MD, USA

2005

2000

Regression Map of SLA onto PC1

40₩ 4th WCRP International Conference on Reanalyses, 7-11 May 2012, Silver Spring, MD, USA

20W

20E

0

6ÓW

Regression Map of SLA onto PC2

Quantitative Comparisons vs PIRATA moorings

Ensemble_mean dataset										
	Ensemble_Mean	ORA-S3	COMBINE-NV	GODAS	CFSR	SODA	ECDA			
(38 W,15 N)	0.74	0.55	0.81	0.83	0.58	0.47	0.30			
(38 W,8 N)	0.82	0.76	0.86	0.82	0.49	0.74	0.61			
(35 W,0)	0.83	0.77	0.66	0.84	0.57	0.72	0.59			
(23 W,0)	0.91	0.81	0.78	0.86	0.68	0.72	0.65			
(10 W,10S)	0.90	0.71	0.95	0.94	0.54	0.71	0.64			

 Table 2
 Anomaly correlations between the time series of HC anomalies from PIRATA mooring datasets and those from six ocean products and

The correlations lager than those in EM analysis are shown in boldface

Table 5 Same as Table 2 but for near square deviations (RHSDS)										
Ensemble spread										
0.29										
0.36										
0.15										
0.16										
0.16										
).).).).										

 Table 3 Same as Table 2 but for root mean square deviations (RMSDs)

The ensemble spread among six ocean products is also shown in the last column. Units are °C. The RMSDs smaller than those in EM analysis are shown in boldface

Summary

• There is considerable uncertainty in HCA from different analyses, especially in the tropical Atlantic;

• **Ensemble average** of multiple ODAs is a useful method to improve estimating the changes of HCA.

Zhu, J., B. Huang, and M. A. Balmaseda, 2012: *Clim. Dyn.*, doi: 10.1007/ s00382-011-1189-8 (published online)

