

20th century Isotope Reanalysis Reproduction of isotopic time series in corals, tree-rings, and tropical ice cores

Kei Yoshimura (AORI, U-Tokyo)

- 1. An economic way to dynamically downscale an ensemble mean field
- 2. First **<u>direct</u>** comparisons with hisotrical isotopic proxy data

Stable Isotope Information: known as "Time capsule of climate"

- Much longer records than man-made observation
 - Oceanic sediment δ^{18} O (millions yBP)
 - Icesheet cores δ^{18} O• δ D (~800 kyBP)
 - Icecap cores δ^{18} O•δD (~20 kyBP)
 - Speleothem δ^{18} O (~2000 yBP)
 - Treering δ^{18} O (~1000 yBP)
 - Coral δ^{18} O (~400 yBP)

Still some difficulties in interpretation

NOAA: http://www.ncdc.noaa.gov/paleo/

Forward Proxy Modeling Approach

Forward modeling: Isotope-GCM/RCM and Offline Modules

 Incorporate water isotopes as passive tracers in models. Whenever water phase change takes place, isotopic water (HDO, H₂¹⁸O) behave differently to ordinary water (H₂¹⁶O).

4

Spectral Nudging: Poor man's data assimilation

Use large scale (>1000km) winds to constrain dynamical field, so that the isotopic field is also constrained and reproduced in daily to inter-annual time scales.

Yoshimura and Kanamitsu, 2008; Yoshimura et al., 2008

Yoshimura et al., 2008

Validation: Comparison in δ^{18} O in Precip

Correlation b/w Nudged vs AMIP

 $P\delta^{18}O$ Cor.b/w IsoGSM1 Nudged vs Free, 1-yr ave, 1980-2000

• Interannual variability in precipitation δ^{18} O is NOT constrained by SST except tropic regions.

Atmospheric modes play independent roles for δ^{18}

20th century Reanalysis

(Compo et al., 2011)

- Using only surface pressure data historically recorded since 1870's
- Ensemble Kalman Filter for data assimilation (56 member)

Whitaker et al. (2009)

- T62L28 GFS with NOAH LSM
- Reanalysis skill is comparable to current Day-3 forecast skill (Whitaker et al., 2009)
- Ensemble Mean (EM) fields are publically available.

A Problem for *Poor man's Data Assim.*

Are the <u>ensemble mean</u> <u>fields</u> appropriate as lateral boundary conditions for spectral nudging?

NO!!

15

10

4.5

3.5

3

2

2.5

1.5

0.5

0.25

0

15

10

5 4.5

3.5

3 2.5

2

1.5

0.5

0.25

0

5

-2 -3

-4

-5

7

ORIG

DJF 1981-83, Tot.Prcp [mm/d] Org glbave=3.04673[mm/d]

DJF Tot.Prcp diff 1981-1871 [mm/d] Org glbave=-0.0307852[mm/d]

ΕM

DJF 1871-73, Tot.Prcp [mm/d] EM glbave=2.21862[mm/d]

DJF 1981-83, Tot.Prcp [mm/d] EM glbave=2.72165[mm/d]

15

10

4.5

3.5

2.5

1.5

0.5

0

0.25

-2

-3

-4

-5

3

2

DJF Tot.Prcp diff 1981-1871 [mm/d] EM glbave=0.503022[mm/d]

Diff

Transient component of moisture divergence is smoothed out in **EM**

Total divergence

Mean

Transient

Modification of single member by ensemble mean increment (MS method)

$$F_n^{new} = F_n + \left\langle \overline{F} \right\rangle - \left\langle F_n \right\rangle$$

- where F is full field of physical variable, n is an ensemble member, bar indicates ensemble mean, and <> indicates running mean (e.g. one-month).
- The downscaling will be performed using F_n^{new} as a lateral boundary forcing.

Specification of experiments

- Atmospheric Forcing: 20thC Reanalysis (Compo et al., 2011)
 - Also regarded as "truth".
- Experiments: Different by the atmospheric forcings.
 - EM: Ensemble mean is used.
 - S1: Arbitrary chosen single member (run01) is used.
 - S3: Mean of the runs in which arbitrary chosen three single members (run01, run11, & run21) are used.
 - Similar to S3, but 6 single members (S3 + run31, run41, & run51) are used.
 - MS: Modified single member is used.
- Periods:
 - 1871-2008 for EM and MS.
 - 1871-1873 and 1981-1983 for S1-S6.
- Model: IsoGSM with global spectral nudging (Yoshimura et al., 2008)

Seasonal mean precipitation with MS field

EQ-

19C

DJF Tot.Prcp diff 1981-1871 [mm/d] Org glbave=-0.0307852[mm/d]

DJF Tot.Prcp diff 1981-1871 [mm/d] EM glbave=0.503022[mm/d]

10 4.5 3.5 2 0.5 0.25 0

10

4.5

1.5 0.5

0.25

RMSD in Precipitation against "truth"

Seawater δ^{18} O from Coral and Model

Yoshimura et al., in prep

Reproducibility of Interannual $\delta^{18}O_{_{SW}}$ and Precip Amount

Kojima et al., 2011.

Treering δ^{18} O in West USan Francisco

Measured values are composite of Bale 2010 and recent Stott and Rincon data. Model is based on Roden Model with met./iso

inputs from Yoshimura 20c Reanalysis

Reno

Fresno

Los Angeles

100 km

CP

Lake Tahoe

NEVADA Inyo National

Forest

Isotope Simulator for Ice-cap Cores

Summary

- First 20th century Quasi Reanalysis for Isotope is now available.
 - Global, 6-hourly, 180km-scale, 1871-2008.
 - Higher resolution can be provided upon request.
 - Usage from interdisciplinary communities is most welcome!
- A relatively economical way to dynamically downscale the ensemble mean fields is proposed. <u>Cost would be 1/6.</u>
- Though number is limited, comparisons with paleoclimate proxy data <u>show nice performance for 19th-21st centuries</u>.
- This effort helps to develop the "forward proxy modeling" approach to more comprehensively and more quantitatively interpret the proxy data.
- Moreover, this study may contribute for development of the proxy-constrained (paleo) Reanalysis.

Thank you very much.

In memory of Kana Dr. Masao Kanamitsu (died 2011/8/17)

Acknowledge to: M. Kanamitsu, G. Compo, N. Buenning, L. Stott, M. Zhu, A. Okazaki, K. Kojima

Short-term variability for TES

Short-term variability for SCIA

Correlation and Slope b/w RS & Model

 Model's problematic vapor circulation can be corrected by data assimilation over desert lands (SCIA) and sub tropical oceans (TES).²⁷

Summary of Part 1

- Use of ensemble mean field as atmospheric forcings for downscaling study makes big shortcomings, particularly too small precipitation, when the spread of ensemble members is large.
- Downscaling of each single ensemble member is straightforward, but requires lots of resources and time.
- To avoid these problems, we propose a new method which modifies a single member field to have the same monthly skills as ensemble mean field (MS method).
- Use of the MS method clearly improves skill than direct usage of a single member. About the same skill as when 3 members are directly used.

Seawater δ^{18} O from Coral and Model near Philippines

SSS (Red: Model Blue: SODA)

Icecap δ^{18} O at Mt Huascaranm, Peru

lon=-77.6 ; lat=-9.1

5-yr running mean correlation

 $P\delta^{18}O$ Cor.b/w Nudged vs Free, 5-yr ave, 1881-1910

30N

EQ -

30S -

60S

6ÔF

 $P\delta^{18}O$ Cor.b/w Nudged vs Free, 5-yr ave, 1911-1940

Pδ¹⁸O Cor.b/w Nudged vs Free, 5-yr ave, 1971-2000

60W

0.8

31

1200

0.6

0.4

0.2

9-yr running mean correlation

 $P\delta^{18}O$ Cor.b/w Nudged vs Free, 9-yr ave, 1881-1910

Pδ¹⁸O Cor.b/w Nudged vs Free, 9−yr ave, 1941−1970

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

 $P\delta^{18}O$ Cor.b/w Nudged vs Free, 9-yr ave, 1911-1940

 $P\delta^{18}O$ Cor.b/w Nudged vs Free, 9-yr ave, 1971-2000

RMSD in Wind against "truth"

Long term global precipitation

PRATEsfc, IsoGSM-20CR Glb.AnnAv

Figure 10: Global mean precipitation by each experiments from 1871 to 2008. Original 20th century Reanalysis (green), EM (black), and MS (blue) are shown for all period. Those runs with the direct use of single members (which consists S6) are shown only for 1871-73 and 1981-83.

Nudged vs Un-nudged in Different Period Pδ[™]O Cor.b/w Nudged vs Free, 1−yr ave, 1881−1910 Pδ¹⁸O Cor.b/w Nudged vs Free, 1−yr ave, 1911−1940 60N 30N 30N EQ FO 30S 305 60S 60S 1881-1910 1911-1940 120W юòа 1200 6ÓW $P\delta^{18}O$ Cor.b/w Nudged vs Free, 1-yr ave, 1941-1970 $P\delta^{18}O$ Cor.b/w Nudged vs Free, 1-yr ave, 1971-2000 30N 301 EQ FO 30S 30S 60S 60S 1941-197 1971-2000 120E 120W 60W 120E 120W 60W 180 35 -0.8 -0.6 -0.4 0.4 0.6 0.8 -0.8 -0.6 0.6 0.8 -0.2 0.2 -0.4 -0.20.2 0.4

Icecore δ^{18} O at Eclipse Icefield lon=-139.47; lat=60.51 0 -12 1920 1925 1930 1935 1940 1945 -5 -17 Model -10 -22 po Delta180 -15 -27 Data -20 -32 -25 -37 0 -12 1970 1975 1980 1985 1990 1995 -5 -17

Anomaly Corr., IsoGSM (79-88, s01) Anom.Corr., IsoGSM20c (1979–1988, modsglrun_01)

Number of GNIP sites where correlation is significant for 1980-1999

		ECHAM	GISS-E	IsoGSM-R2	IsoGSM-20C
Correlation	NH (210)	147	171 (81%)	174 (83%)	171 (81%)
	Tropics (142)	68	82 (58%)	96 (68%)	<u>105 (73%)</u>
	SH (37)	22 (60%)	18	25 (68%)	25 (67%)
Anomaly Correlation	NH (146)	13 (9%)	12	114 (78%)	<u>93 (63%)</u>
	Tropics (67)	9	12 (18%)	32 (48%)	34 (50%)
	SH (29)	1	3 (10%)	12 (41%)	12 (41%) 37

Validation: Comparison in δ^{18} O in Precip

 Many other validation studies available. Uemura et al., 2008; Abe et al., 2009; Frankenberg et al., 2009; Pfahl and Wernli, 2009; Schneider et al, 2010; Galewsky and Hurley, 2010; Yoshimura et al., 2010; Berkelhammer et₃₈ al., 2011; Yoshimura et al., 2011; Pfahl et al., 2011; Welp et al., 2011; Zhu et al., 2012; etc.

reering δ^{18} O in Cambodia

Total divergence

Mean

Transient