

IDAA

Some Problems in CFSRR Investigated and Solutions Tested for CFSRL

Jack Woollen, Bob Kistler, Craig Long, Daryl Kleist, Xingren Wu, Suru Saha, Wesley Ebisuzaki

Introduction

Following an intense effort to complete the CFSRR reanalysis for 1979-2010, which contained many new features, and had to be conducted in a very strict timeframe, problems became evident in the results. Several were serious enough that a lower resolution rerun of the CFSRR (named the CFSRL), was proposed to address and correct them, and to run through the period 1948 to the present as a replacement for the R1 product. The presentation describes our experience addressing four problems affecting the atmospheric part of the CFSRR, pre-1998, and how they are to resolved in the CFSRL system.

We looked at 4 issues:

SSU bias correction

Asian radiosonde radiation corrections

Tropical tropospheric cold bias

QBO wind analysis

We accomplished 3 objectives:

Devise and/or install a solution for each issue

•Run 8 years of "CFSRL" testing (1979-1986) for validation

•Run 2 additional 2-year experiments to further develop the QBO analysis (82-83, 98-99)

Extreme Stratospheric Temperature Variations

With Jumps At Processing Stream

Boundaries

Monthly CFSR Temperature Anomalies GLOBAL (1979 - 2009)

Prior to 1998 the SSU assimilation is implicated, especially bias correction of channel 3

Model warm bias feeds into SSU bias correction and heats up the stratosphere until a stream (or satellite) boundary occurs when the bias correction resets...

Jack Woollen EMC/NCEP/NOAA

So turn off the SSU channel 3 bias correction

With Ch3 bias correction off Ch1&2 look better too

Dee et al, "Importance Of Satellites For Stratospheric Data Assimilation", 2007

CFSRR Radiosonde Radiation Correction (RC)

Four separate operational tables used

Creates discontinuities in temp analysis

Interact with variational satellite bias corrections

Highlights the need to use a continuous radiosonde correction in CFSRL, as in ERA, JRA, MERRA, etc.

Jack Woollen EMC/NCEP/NOAA

Jack Woollen EMC/NCEP/NOAA

Jack Woollen EMC/NCEP/NOAA

Jack Woollen EMC/NCEP/NOAA

Jack Woollen ENC/NCEP/NOAA

Improved Fits To Analysis And Forecast

Significant differences from other reanalyses

In tropical tropospheric temperature

Jack Woollen EMC/NCEP/NOAA

CFSRR didn't draw for the radiosonde temperature data in the tropics

Solution: adjust the GSI structure functions to increase the forecast variance in the tropical region, top to bottom

Analysis fits improved and large biases disappeared

CFSRL (solid lines) versus CFSRR (dotted lines)

Diagram from Fanglin Yang

Jack Woollen EMC/NCEP/NOAA

Jack Woollen EMC/NCEP/NOAA

Jack Woollen EMC/NCEP/NOAA

Improvements From Tropical Structure Function Changes

<u>Issue #4</u>

QBO Wind Reversals Not Captured Well

Discovered too late to fix in CFSRR

Caught by surprise – not a problem in R1 or R2

Bogus ERA40 winds into CFSR QBO region Jul1981 - Dec1998

Problem seems to be due to overly narrow tropical FE structure function pre-1998

Single u component impact

Inflated variance appears to solve problem in test run starting in May1994

U-comp wind Singapore raob vs reanalysis 10mb

Original SF

Inflated variance (SF*4)

GrADS: COLA/IGES

However, zonal wind compared to Singapore ob shows the prx (SF*4) system still not capturing the wind phase shifts sufficiently in early 1980's

Large bias in 1982 easterly phase shift

Need additional work to fix the QBO

Is the SSU data interfering with the QBO wind analysis?

> Damp the effect of SSU channels by raising ob errors.

How else can the impact of the data be increased?

>Assimilate synoptic observations all day.

It turned out both of these measures had a similar positive effect on the QBO analysis, but each at different levels

2012-04-22-04:30

GrADS: COLA/IGES

2012-04-22-04:30

2012-04-22-04:30

2012-04-27-13:38

2012-04-27-14:02

2012-04-27-14:09

Some reference slides

Reanalysis Comparisons with Singapore Winds

(Means Diff and Diff Variability)

1982-1984

1998-1999

Reanalysis-Singapore Zonal Wind Diff StDev

Reanalysis-Singapore Zonal Wind Diff StDev

Adaptive RC procedure updated from R1 for CFSRL

Each month the composite (F-O) statistics for temperature are computed for each WMO block (01-99)

A profile of percentages of the (F-O) stats is defined as follows: pob>=700 tfrac=0 pob==500 tfrac=.8*.333 pob==400 tfrac=.8*.666 pob< 400 tfrac=.8

A data density factor is defined: ddf=min(1,cnt/15)

A limiting factor is defined: abs(cor)<=tfrac*2.5

Next months corrections in each block is: cor=(F-O)*tfrac*ddf.

Finally the absolute value of the correction is limited to be <=tfrac*2.5.