Ocean-Atmosphere Characteristics of Tropical Instability Waves(TIW) Simulated in the NCEP Climate Forecast System Reanalysis

4th World Climate Research Program International Conference on Reanalyses 8 May 2012

> Caihong Wen, Yan Xue and Arun Kumar Climate Prediction Center NCEP/NWS/NOAA

Impact of TIW on Climate & Marine Ecosystem

- Momentum and heat budget (Jochum and Murtugudde 2006)
- Nutrient distribution (e.g. Strutton et al. 2001)
- Interannual variations, i.e ENSO (e.g. An 2008; Zhang and Busalacchi 2008)
- Mean ocean and atmosphere states

Challenges:

In situ observations

 ---- too sparse

 Satellite Observations

 ---- limited surface variables and record
 NWP reanalysis products (e.g. NCEP R1,R2)

 ----- coarse resolution, SST boundary conditions

<u>CFSR:</u>

- Much higher resolution : 1979-2009 Atmosphere:T382(~38km) Ocean:0.25° ~0.5°
- The guess forecasts was generated from a 6-h coupled system
- Assimilation of ¼ degree daily OI SST Analysis

Purpose: Assess capability of the CFSR in capturing ocean-atmosphere interactions associated with TIWs

Data:

- CFSR : SST, HFLX,τ,P,T2m, WS,q, currents Daily data 2001-2008
- Satellite observations: TMI SST and QuikSCAT winds
- In situ: TAO

0.01 0.02 0.04 0.06 0.08 0.11 0.14

Coupling of SST and Surface Wind

Coupling of SST and Surface Wind

•150° W – 110° W, 2°N, June-January, 2001-2008

•Both SST and wind perturbations are about 70% of the satellite observations.

Coupling Strength (coefficient ms⁻¹ per degree)

•The CFSR well reproduced the observed linear SST-Wind relationship

Coupling of SST and Surface Wind

•150° W – 110° W, 2°N, June-January, 2001-2008

•Both SST and wind perturbations are about 70% of the satellite observations.

Coupling Strength (coefficient ~0.6 ms⁻¹ per degree)

•The CFSR well reproduced the observed linear SST-Wind relationship

Wind Stress Response and Feedback

Does the perturbations of wind stress curl feed back to TIW through Ekman dynamics?

Wind Stress Response and Feedback

Does the perturbations of wind stress curl feed back to TIW through Ekman dynamics?

-0.2 •W_e is much weaker than W, indicating
-0.4 the small feedback effect on TIW growth
-0.6 •Caveat: (1) Difficult to estimate Ekman pumping near the equator; (2) Impact of surface current on wind stress is neglect in the CFSR

3-D Atmosphere Response

Uncertainties in Atmosphere Response

CFSR: ~ 10 Pa °C⁻¹ TAO: ~ 10 Pa°C⁻¹ (Cronin et al. 2003) Radiosonde : little TIW signal (Hashizume et al. 2002)

CFSR: Mainly confined in the PBL Radiosonde: Strong temperature inversion (Hashizume et al. 2002)

Response and Feedback of Surface Heat Flux

Solar heat flux and SST

Satellite Visible Cloud and SST

Deser et al.(1993) :

- <u>4.2%</u> per degree
- Over and upstream of positive SST anomalies
- Change in solar radiation of
- ~ <u>10 W/m² per degree</u>
- •Damping of local SST

CFSR:

- •<u>5%</u> per degree
- Down stream of positive SST anomalies
- Change in solar radiation of
- ~<u>9W/m²</u> per degree
- •Damping of local SST

Response and Feedback of Surface Heat Flux

Latent heat flux and SST

CFSR:

- <u>25 W/m² per ^oC</u> of latent heat flux
 40 W/m² per ^oC of net heat flux, resulting in -0.5 ^o C per month (MLD=50m)
- Zhang and McPhaden(1995): ~ <u>50 W/</u> <u>m² per °C</u> of latent heat flux
 Thum et al. (2002): ~ <u>40 W/m² per °C</u> of latent heat flux, resulting
 -0.5° C per month (MLD=50m)

Summary

An in-phase relationship between SST and surface wind was well represented in the CFSR;

- The CFSR exhibits coherent patterns associated with TIWs both in the ocean and the atmosphere ;
- The feedback of wind stress curl perturbation to TIWs is negligible;
- Uncertainties exist in surface pressure and vertical structure;
- Surface net heat flux are dominated by latent heat fluxes and have a large negative feedback to TIW SSTs variability.

Wen, C., Y. Xue and A. Kumar,2012: Ocean—atmosphere characteristics of tropical instability waves simulated in the NCEP climate forecast system reanaylsis, J. Climate. doi:10.1175/JCLI-D-11-00477.1, In press(available online).

Annual mean (2001-2008) of (a) EKE (cm2 s-2) at 5m; (b) EKE (cm2 s-2) at 1100 W; (c) EKE (cm2 s-2) along 0oN. In (b) and (c), blue line presents the annual mean 20oC isotherm depth.

Yan et al. 2011