

Extending use of satellite data for reanalyses

Roger Saunders¹, Viju John¹, Graeme Kelly¹ and Paul Poli²

¹Met Office ²ECMWF

© Crown copyright Met Office

Met Office Extending use of satellite data for reanalyses

- There are many "research" satellites launched in the 1970s which <u>potentially</u> could improve reanalyses in that period or at least help to validate them
- Satellite data already used in reanalyses are being reprocessed to provide improved quality data for next generation reanalyses <u>and to fill gaps in data</u>
- We need to ensure future continuity of satellite climate data records
- This talk looks at some options for additional new satellite datasets to be used for reanalyses and what data are being reprocessed

Why bother? Met Office Hadley Centre Why bother? Impact of MSU on Australian/NZ forecasts in ERA-40

Satellite data have been shown to be very valuable in Improving the quality of the analyses in previously data sparse regions. Evidence for this is seen in the forecast skill which improved by 2 days.

Factors to consider when adopting a new dataset

In order for a dataset to be considered suitable for reanalysis a number of factors must be considered:

- Length and fidelity of data record (>1 year)
- Overlap with other sensors?
- Access to dataset in a readable format
- Quality of dataset (stability, bias, random noise)
- Effective q/c (e.g. clouds, precip, surfaces)
- Availability and complexity of observation operator (e.g. need channel spectral response)

© Crown copyright Met Office

What data is available?

© Crown copyright Met Office

Observations used in ERA-40

VTPR	Vertical Temperature Profile Radiometer
TOVS	TIROS (Television InfraRed Observational Satellite) Operational Vertical Sounder
HIRS	High-resolution InfraRed Sounder
SSU	Stratospheric Sounding Unit
AMV	Atmospheric Motion Vectors
SSM/I	Special Sensor Microwave/Imager
ERS	ESA Remote-sensing Satellite
ATOVS	Advanced TOVS
AMSU	Advanced Microwave Sounding Unit

[2] Satellite instrument acronyms

Fig. 2 Schematic illustration of the use of observing systems in ERA-40.

Sounder Radiances

Timeline of satellite observations

IRIS (Nimbus-3, -4) NEED RTM	Apr 1970 - Jan 1971	NSSDC, ftp	2 recent papers using IRIS data				
SIRS (Nimbus-3, -4) NEED RTM	1969-1972 (1.8)	Nimbus-4 radiances at NSSDC, Mag tape	Nimbus-4 being transferred to ftp				
SCR (Nimbus-4, -5) <mark>NEED RTM</mark>	1970-1973, 1972- 1974 (4.5)	1. NSSDC, Mag tape 2. Oxford Physics, CD	 Should be on ftp by late 2011 Contains only gridded radiances for N-4 				
SAMS (Nimbus-7) NEED RTM	1978-1983	1. Oxford Physics, CD 2. NSSDC, unknown media					
PMR (Nimbus-6) NEED RTM	1975-1978	At Met Office, CD					
SSU NEED IMPROVED RTM	1978-2006	NOAA	Cell pressure changes over time: should be modelled by RTM				
ITPR (Nimbus-5) NEED RTM	1972-1976 ?	NSSDC, unknown media	From Bill Smith "ITPR operation was very intermittent because of a scan mirror motor problem".				
HIRS (Nimbus-6) NEED RTM	1975-1976	NSSDC, Mag tape	Should be on ftp by late 2011. From Bill Smith: "HIRS SW channels became noisy after a couple months of operation but the most important LW data remained useful throughout its lifetime"				
VTPR (NOAA-2/ITOS-D,-3/-F,-4/-G,-5/- E2) CHECK RTM	1972-1979 (6.3)						
SSH actually an advanced VTPR with 16 channels (DMSP F-1,-2,-3,-4) NEED RTM	1976-1980 ?	NSSDC, Mag tape	Have tapes of DMSP but don't know if VTPR is on them. No plans to read tapes.				
MFR (DMSP F-1,-2,-3,-4) NEED RTM	1976-1980 ?	NSSDC, Mag tape	Have tapes of DMSP but don't know if MFR is on them. No plans to read tapes.				
HIRS/2,/3,/4	1978-present	NOAA					

A "new" HIRS to assimilate

Met Of Hadley C

Channel	Characteristics									
Channel Number	Central Wave Number	Interval Between 50% Response Points	Noise E Rad (mw/m ⁻²	Noise Equivalent Temperature (NE∆T) Source Temp. = 290°K						
	(cm ⁻¹)	(cm ⁻¹)	$T_D = 118^{\circ}K$	$T_D = 124^{\circ}K$	$T_D = 118^{\circ}K$	$T_D = 124^{\circ}K$				
1 2 3 4 5 6 7 8	668 679 690 702 716 733 749 900	2.8 13.7 12.6 15.9 17.5 17.6 18.4 34.6	3.0 0.66 0.45 0.27 0.52 0.23 0.27 0.19	6.0 1.5 0.75 0.44 0.85 0.38 0.42 0.30	1.90 0.41 0.28 0.17 0.32 0.14 0.16	3.80 0.94 0.47 0.27 0.52 0.23 0.26 0.19				
9 10	1224 1496	63.4 87.6	0.15 0.13	0.24 0.19	0.14 0.21	0.23 0.31				
11 12 13 14 15	2190 2212 2242 2275 2357	20.6 22.5 21.6 35.2 23.0	0.012 0.003 0.006 0.002 0.003	0.012 0.003 0.006 0.002 0.003	0.13 0.04 0.08 0.03 0.06	0.13 0.04 0.08 0.03 0.06				
16	2692	296.9	0.001	0.001	0.06	0.06				
17	14,443	892.2								

Microwave sounders

NEMS (Nimbus-5) NEED RTM	1972-1973	NSSDC, Microfiche	Some NEMS data in Bldg 28. No details
ESMR (Nimbus-5) NEED RTM	1972-1976	NSIDC, ftp	Gridded dataset only?
SCAMS (Nimbus-6) NEED RTM	1975-1976	NSSDC, Mag tape	Should be on ftp by late 2011
MSU	1978-2006	NOAA, ftp	Reprocessed by NOAA/STAR
AMSUA	1998-present	NOAA, NASA for EOS-Aqua EUMETSAT for METOP	Reprocessed by NOAA/STAR (except NASA EOS-Aqua)
AMSUB & MHS	1998-present	NOAA, NASA for EOS-Aqua EUMETSAT for METOP	
SMMR (Nimbus-7) NEED RTM	1978-1987	1. NSSDC, Mag tape 2. NSIDC, ftp	 No plans to recover Nimbus-7 data for now. Gridded radiance only?
SSM/I	1987-present	1. RSS via NCDC 2. CM-SAF	RSS currently generating recalibrated radiance dataset V7, to be transferred to NCDC. Should be available in a couple of months.
SSM/T (-1 and -2) NEED RTM FOR SSM/T-1	1994-?	Met Office, ftp	
SSM/I-S	2005-present		
AMSR-E (EOS-Aqua)	2002-2011	NASA	
WINDSAT	2003-present	NRL	

Atmospheric motion vectors

METEOSAT	1977-present	EUMETSAT	EUMETSAT reprocessing ongoing for all data from METEOSAT-2 (1981) onwards
ATS, SMS	1960s and 1970s	CIMSS, Mag Tapes	Some voluntary data rescue at CIMSS. How much longer before the last persons able to read those analog tapes retire?
GOES	1978-present	CIMSS, ftp	Reprocessing plans unclear
GMS, GOES-9, MTSAT	1979,1987-present	JMA	Reprocessing complete
AVHRR METOP	2006-present	EUMETSAT	EUMETSAT reprocessing ongoing in ERA CLIM
AVHRR NOAA	1978-present	CIMSS, ftp	Setting up a reprocessing system, will run by November 2011
MODIS	1999-present	NASA	Systematic reprocessing for low-level radiances (?), but AMV reprocessing needed

How to assess new data?

© Crown copyright Met Office

Global Satellite Intercalibration Calibration System Simultaneous Nadir Overpass (SNO) Method

Met Office Hadley Centre

POES intercalibration

• Useful for remote sensing scientists, climatologists, as well as calibration and instrument scientists

•Potential for (A)ATSR and geo or polar matches

•Has been applied to microwave, vis/nir, and infrared radiometers for on-orbit performance trending and climate calibration support

•Capabilities of 0.1 K for sounders and 1% for vis/ nir have been demonstrated in pilot studies

GOES vs. POES

Global SNOs

John et al., (in press) J. Geophys. Res.

Distribution of bias for AMSU-B/MHS

© Crown copyright Met Office

John et al., (in press) J. Geophys. Res.

Assessing observations for use in reanalyses

Bias for radiosonde and MSU satellite obs

From A. Simmons

AMSU-B/MHS Instrument noise

Hadley Centre

 Quality of the sounding data has to be analysed before homogenisation

 Select data from each satellite based on channel performance (e.g., NEdT) by looking at black body.

This is completely independent from the reanalysis

Time series of monthly sdev of O-B stats before bias correction for MSU and AMSU sounding channels

Vary observation error for different satellites -

Crown copyright Mer Once

Met Office Hadley Centre

HIRS instrument noise for good instruments (0.3K) appears to be half VTPR noise (~0.6K). In ERA-40 observation errors for HIRS-4 was 0.6K and VTPR-4 was 0.7K.

ERA-Clim Satellite Observation operators

Provision of updated or new RT coefficients for:

- SSU (based on latest spectroscopy and allowing for cell pressure) in progress thanks Shinya!
- PMR follows SSU
- VTPR recomputed with new spectroscopy done
- SSM/T2 done
- SSM/T, SCAMS, SMMR in progress

Impact of cell pressure on SSU weighting functions

Instru- ment	Characteristics	Immediate concern	Recom- mendation				
NEMS	Microwave spectrometer, with two water vapour channels near 22 GHz (5 mm) and three channels near 59 GHz (10 mm), spatial resolution 180 km at nadir	Reject for now					
SCAMS	Microwave spectrometer, with one water vapour channel near 22 GHz (5 mm), three channels near 59 GHz (10 mm), one window channel, spatial resolution 150 km at nadir	Consider for assimilation					
SSM/T	Microwave temperature sounders precursors to AMSU-A and AMSU-B but with bigger fields-of-view. Met Office preparing a homogenized data for ERA-CLIM.	RT forward model needed for SSM/T	Assimilate	-			
SMMR	Microwave radiometer, ten channels: dual-polarization measurements at 6.63, 10.69, 18.0, 21.0, and 37.0 GHz, spatial resolution 150 km at nadir	Raw radiance data not found	Keep looking for data	00			
SSH	Discrete filter radiometer, six channels in the 15 micron CO_2 band, one window channel, eight water vapour channel in the 22–30 micron band, one channel in the 10 micron ozone band	Keep looking for data					
HIRS on Nimbus-6	Discrete filter radiometer, seven channels in the 15 micron CO_2 band, two window channels, two water vapour channels, five channels in the 4.3 micron band, spatial resolution 25 km at nadir	Assimilate	+				
SCR	Radiometer observing through a pressurized optical cell, six channels in the 15 micron CO ₂ band, spatial resolution 112–160 km at nadir (Nimbus-5: eight channels in the 15 micron CO ₂ band, three window channels, one water vapour channel at 18.6 microns, spatial resolution 30 km at nadir)	Validate					
PMR	Radiometer observing through a pressurized optical cell	RT coefficients challenging	Assimilate				
HRIR	Visible and infrared imager, 8 km spatial resolution at nadir, 3.5–4 micron channel (and also 0.7–1.3 for Nimbus-3)	Validate					
MRIR	Infrared imager, five channels including a water vapour channel in the 6.7 micron band	Validate					
THIR	Infrared imager, one window channel and one water vapour channel in the 6.7 micron band	Only JPEG images available, raw radiance data lost forever?	Keep looking for data				
IRIS	Michelson interferometer, covering 5–20 microns with 5 cm ⁻¹ normalized apodized spectral resolution (Nimbus-4: 6.25–25 microns, 2.8 cm ⁻¹ resolution), nadir spatial resolution 144 km						
SIRS	Grating spectrometer, covering 11–15 microns (Nimbus-4: 11–36 microns), nadir spatial resolution 220 km	Narrow swath (up to 12 degrees only from nadir)	Consider for assimilation				
AVHRR	Imager on polar orbiters, atmospheric motion vector (wind) retrievals at the poles. EUMETSAT and CIMSS working on reprocessing.	Reprocessing not complete yet	Assimilate	-			
SeaSat	First scatterometer ever. Suspicious end-of-life.	Very short dataset (97 days)	Validate				
NSCAT	Scatterometer from U.S.	Short dataset (9 months)	Assimilate				

- NASA MEaSUREs Program (SBUV, TOMS...), JPL
- NOAA STAR (AVHRR, AMSU-A, SST,...)
- ESA (GlobXXX, Climate Change Initiative)
- EUMETSAT (Meteosat, AVHRR AMVs, radiances)
- SCOPE-CM (AMVs, albedo, UTH, SSM/I,..)
- JMA (MTSAT/GMS AMVs + radiances)

Example: Two Wind Vector Processors Results Antarctic 14 April 2008, 14:03 UTC

EUM/OPS/VWG/ 12/1285 Issue 1 21/03/2012

4th WCRP Reanalysis Conference, 7-11 May 2012, Silver Spring, USA

ESACCI 13 ECVs

	Surface	Air temperature; Precipitation, Pressure, Surface radn budget, Wind					
Atmosphere	Upper Air	Clouds, Wind, Earth Radn Budget Upper air temp, water vapour					
	Composition	Carbon dioxide, methane & GHGs Ozone, Aerosol properties					
Ocean	Surface	SST, Sea-level, Sea-ice, Ocean colour Sea state, Salinity, CO ₂ partial pressure					
	Sub-surface	Temperature, Salinity, Current, Nutrients, Carbon, Ocean Tracers, Phytoplankton					
Terrestrial	Glaciers & Ice FaPAR, LAI, All Soil moisture, Permafrost, Seas	aciers & Ice caps, Land cover, Fire disturbance, PAR, LAI, Albedo, Biomass,Lake levels, Snow cover, il moisture, Water use, Ground water, River discharge, rmafrost, Seasonally frozen ground, Ice Sheets					

Survey of early satellite data

Met Office Hadley Centre

Recommendation of old satellite observations for assimilation:

- HIRS on Nimbus-6 (mid 70s)
- PMR on Nimbus-6 (pre SSU mid 70s)
- SSM/T/T-2 (pre AMSU-A/B) 1994-1999
- SMMR (pre SSM/I) 1978-1987 + SSMIS(2005-present)
- SCAMS (pre MSU) 1975-1976
- AVHRR polar AMVs (1978-present)
- NSCAT scatterometer (1996-1997)
- BUV and SBUV on NIMBUS-4/7 ozone (1970-1988) Reprocessed or new forward model
- Reprocessed AMSU/MHS (1999-present)
- Reprocessed AMVs (Meteosat, GMS, GOES)

GCOS ECV	2008	2009	2010	2011	2012	2013	2014	2015	2016	2017	2018	2019	2020	2021	2022	2023	2024	2025
Atmospheric																		
Surface precip																		
Surface wind																		
TOA radn budget									C									
Solar irradiance			ŠKI	n		0	Th	ρ	ŤII'	T	re							
Temp profile					9								•					
Water vapour profile																		
Wind profile																		>
Cloud properties																		
Carbon dioxide										V								\land
Methane																		
Ozone																		
Other GHG																		
Aerosols																		
Oceanic																		
SST																		
Surface salinity																		
Sea level																		
Sea state																		
Sea-ice																		
Currents																		
Ocean colour																		
Terrestrial																		
LST																		
Lake levels																		
Snow cover																		
Glaciers and ice caps																		
Permafrost													_					
Albedo													Key					
Land cover (inc veg)						~ \/	rial		in .	don		~ f	GOO	d capai	Ollity bility bu	t poods	improv	
fapar				<u> </u>		eva	aria	Jies		uan	yer	U	Poo	r canab	ility	<u>t neeus</u>	mpiov	
LAI				🗌 h	eine	a lo	st o	r de	ara	ded	!		Cap	ability lo	ost			
Biomass						יי <u></u> נ			3.4				Сар	ability r	educed			
Fire													No o	capabili	ty			
Soil moisture													Ass	umes fly	y microv	wave im	lager	

Impact of Scatterometers in the Met Office

Trial compared with NO-SCAT control	Score against observations (+/- 0.05)
ALLSCAT	+0.97
ASCAT only	+0.61
QuikSCAT only	+0.66

- The table shows that ASCAT gives approximately the same impact as QuikSCAT on Met Office forecasts from the **June 2007** assimilation trial
- It is also clear that "Two global coverage scatterometer missions provide significantly greater benefit to the numerical weather prediction community than a single mission can deliver alone."

- Met R&D Technical Report 511, Met Office, March 2008.

- Satellite data archaeological studies have shown a number of promising datasets worth investigating
- Problems are:
 - Finding dataset on readable medium
 - Finding Metadata (e.g. spectral responses, polarisation,...)
 - Assessing if biases are stable enough and noise is low enough
- A number of reprocessed datasets available now to replace existing ones (AMVs, radiances, ..)
- There is scope to improve the assignment of observation errors in reanalyses
- Need to ensure future continuity of satellite datasets

If you have any information please contact me.

roger.saunders@metoffice.gov.uk

Any questions?

