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1)   We need the longest possible reanalysis datasets to establish the significance of 
climate changes and to validate climate models. Several major circulation trends evident 
over the second half of the 20th century are weak or non-existent in century-long records. 

2)   There is more to climate change that just a shift of the mean. One  also needs to 
consider the changes in variability. This has large implications for changes in extreme 
anomaly statistics. 

3)   The PDFs of daily weather anomalies are not Gaussian. Their skewed and heavy-
tailed character make the detection and attribution of changes  in extreme weather 
statistics even more difficult using relatively short ( ~ 50-yr ) climate records.  
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20th Century (20CR), ERA-40, NCEP-NCAR, ERA-Interim Reanalyses, 
and Statistical Reconstructions, and SST-forced GCM integrations 

Pacific Walker 
Circulation 
(500 hPa vertical 
velocity, SONDJ) 

North Atlantic 
Oscillation 
(Sea Level 
Pressure, DJF) 

1870 2008 

Extreme weather events are often associated with variations in the 
major modes of atmospheric variability.  Several of these modes do not 
show significant trends over the 1871-2008 period. 

Compo et al. 2011 
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20th Century NAO variations in 20CR (BLACK) and other reanalyses, in an AMIP 
ensemble (RED) with prescribed observed SSTs and radiative forcings, and in 3 
coupled model simulations with prescribed radiative forcings only.  
Note that there are no significant long-term trends in the 20CR and AMIP series. 

NAO index  

7-yr running mean NAO index  
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             PWC index  

7-yr running mean PWC index  

20th Century PWC (Pacific Walker Circulation) variations in 20CR (BLACK) and 
other reanalyses, in an AMIP ensemble (RED) with prescribed observed SSTs and 
radiative forcings, and in 3 coupled model simulations with prescribed radiative 
forcings only. There are no significant long-term trends in the 20CR and AMIP series. 
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                   Several possible decompositions of climate variations 

N   +
+
+ Unforced Radiatively Forced 

N   +
+
+ Natural Anthropogenic 

N   +
+
+ Unpredictable  Predictable  

N   +
+
+ ENSO-related ENSO-unrelated 

X (t)  = 

 =  

 = 

 = 

The  blue terms     complicate interpretation of discrepancies between observed and model 
simulated X(t) over relatively short record lengths.  
 
It might be more appropriate to consider the statistics of X(t), specifically the PDF      
p(X)  of  X(t),  and ask whether there have been significant changes in  p(X) over the 
20th century and to what extent climate models have been able to capture them. 
 
Considering observed and simulated long-term trends (i.e., changes in the first statistical 
moment of  p(X) ) is one way to do this, but it is not the only or even the most important 
way, because climate change represents more than a shift of the mean.    

blue terms 
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Even relatively minor changes of variability associated with a mean climate shift 
 

 can have a large effect on the probability of extreme values     

The right panel shows that if a mean positive shift of 0.5 is associated with a reduction in sigma 
from 1.0 to 0.8, the probability of extreme positive values  (say x > 1) increases from 16% to 
27%, which is smaller than the increase from 16% to 31% obtained if there is no change in 
sigma (left panel) 
 
The probability of even more extreme anomalies ( x > 2.5) actually decreases in this case. 
 
In such a scenario global warming might actually DECREASE the risk of extreme heat waves ! 
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P( x >  2 ) = 2.3%  
and increases by 
a factor of 7 
 
P( x > 4 ) = 0.003% 
and  increases by 
a factor of 43 
 
 
 
P( x >  2 ) = 3.4%  
and increases by 
only a factor of 4 
 
P( x > 4  ) = 0.34 % 
and  increases by 
only  factor of 3 

It is also important to account for the non-Gaussian character of the PDFs of many 
climate variables of interest, which has large implications for the probabilities of 
extreme values and for our ability to estimate their changes using limited records 

 
 
Gaussian PDFs 
 
 
 
 
 
Non-Gaussian PDFs 
 
skewed and heavy-tailed with  
Skewness  S  = 1 
Kurtosis    K = 5  
 
 
From Sardeshmukh, Compo,  
and Penland 2012 

Consider Gaussian vs non-Gaussian PDFs, both  p(0,1), and shifted by 1 sigma
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Skewness    S = <x3>/σ3  and   Kurtosis   K = <x4>/σ4 – 3  of daily anomalies in winter 
 
computed over 137 winters (1871-2007) in the 20CR dataset (Compo et al 2011)  

         Skewness S          Kurtosis K     

250 mb 
Vorticity

850 mb 
Air temperature

500 mb
Vertical Velocity
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Some distinctive ���
features of the    ���
non-Gaussianity of ���
standardized daily 
anomalies at all ���
Northern Hemisphere���
grid points ���
���
computed using 137 
winters (1871-2007) of 
20CR data 

            K   vs   S                 Average Histograms       

250 mb 
Vorticity

850 mb 
Air temperature

500 mb
Vertical Velocity

Note the parabolic 
inequality  
K   >   3/2 S2

Note that the crossover 
point where p(x) = p(-x) 
lies between 1.4σ and 1.7σ



10 

The parameters of this model (and of the PDF) can be estimated using the first four moments of 
x and its correlation scale. The model can then be run to generate Monte Carlo estimates of 
extreme statistics 

 dx
dt

 =  −  λ +
1
2
E2⎛

⎝⎜
⎞
⎠⎟
x  +  b η1  +  (Ex + g) η2  −  1

2
Eg

              If  E→ 0 , this is just the evolution equation for Gaussian "red noise"   

This PDF arises naturally as the PDF of the simplest 1-D  damped linear Markov process 
that is perturbed by Correlated Additive and Multiplicative white noise (“CAM noise”) 

η1  and η2  are 
Gaussian white noises
of unit amplitude. 

A generic “Stochastically Generated Skewed” (SGS) probability density function (PDF)  
suitable for describing non-Gaussian climate variability   (Sardeshmukh and Sura , J. Clim, 2009) 

λ > 0        b > 0     
g  > 0  or  g  < 0       
E > 0

 

p(x) =  1
N  (Ex + g)2 + b2⎡⎣ ⎤⎦   

− 1+ λ
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⎛
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               If  E→ 0,  then  p(x) →  a Gaussian PDF     

Such a PDF has power-law tails, its moments satisfy  K > (3/2) S2 ,  and  p(x) = p(−x) at  x̂ ≈ 3  σ
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Sharply contrasting behavior of extreme w  anomalies (and by implication, of extreme precipitation anomalies)  
 
obtained  in 108-day runs (equivalent to 106 100-day winters) of the Gaussian and non-Gaussian models 
 
 

even in this 
statistically stationary world. 

 
Blue curves: Time series of decadal maxima                          
(i.e the largest daily anomaly in each decade  = 1000 days          
 = 10 100-day winters)   
 
Orange curves: Time series of 99.5th decadal percentile      
(i.e. the 5th largest daily anomaly in each decade)  

       Non-Gaussian (S=1, K=5)                    Gaussian       

-4 -2 0 2 4 6
Standardized w
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(b)  skew = +1

No rain
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mean and variance   
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Sharply contrasting behavior of extreme w  anomalies (and by implication, of extreme precipitation anomalies)  
 
obtained  in 108-day runs (equivalent to 106 100-day winters) of the Gaussian and non-Gaussian models 
 
 

even in this 
statistically stationary world. 

 
Blue curves: Time series of decadal maxima                          
(i.e the largest daily anomaly in each decade  = 1000 days          
 = 10 100-day winters)   
 
Orange curves: Time series of 99.5th decadal percentile      
(i.e. the 5th largest daily anomaly in each decade)  

       Non-Gaussian (S=1, K=5)                    Gaussian       
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(b)  skew = +1
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Sharply contrasting behavior of extreme “-NAO”  anomalies (and by implication, of extreme  weather)  
 
obtained  in 108-day runs (equivalent to 106 100-day winters) of the Gaussian and non-Gaussian models 
 

even in this 
statistically stationary world. 

Decorrelation time = 5.75 days 

 
Blue curves: Time series of decadal maxima                          
(i.e the largest daily anomaly in each decade  = 1000 days          
 = 10 100-day winters)   
 
Orange curves: Time series of 99.5th decadal percentile      
(i.e. the 5th largest daily anomaly in each decade)  

       “-NAO”  (S=0.45, K=0.4)                    Gaussian       
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We estimated histograms from the December-March daily 20CRdata for these  
climate indices  using each of the 56 reanalysis ensemble members, for two 50 
year periods: 1901-1950 and 1959-2008. 
 
We also estimated SGS distributions for each index and ensemble member for 
1901-1950 and 1959-2008.  
 
Using the ensemble-average SGS parameters, we generated a 1 million winter 
series to estimate the sampling uncertainty in the SGS distributions .  

So, how do we assess 20th century changes in the NAO and 
PWC indices in light of these considerations ?   



15 

The Result : We find no significant changes between the first second halves of 
the reanalysis period  in the PDFs of the PWC and the NAO. 

Note again that the blue and red curves and boxes are a measure of observational uncertainty, 
whereas the grey swaths are a measure of sampling uncertainty.  
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Summary 

 
1.  The PDFs of many climate variables are significantly skewed and heavy-tailed. This fact has 

enormous implications both for the probabilities of extremes and for estimating changes in those 
probabilities using climate records or reanalyses of limited length.    

 
2.  We have demonstrated the relevance of “stochastically generated skewed” (SGS) 

distributions for describing daily atmospheric variability, that arise from simple extensions of a 
“red noise” process.   

3.  The parameters of these SGS distributions, and of the associated linear Markov model,  can 
be estimated from the first four moments of the data (mean, variance, skewness, and kurtosis). 
The model can then be run to generate not only the appropriate SGS distribution, but also to 
estimate sampling uncertainties through Monte Carlo integrations.   

4.  Using this model, we find that the variability of the NAO and the Pacific Walker Circulation 
has not changed significantly since 1901. 

 
5.  To accurately represent extreme weather statistics and their changes, it is necessary for 

climate models to accurately represent the first four moments of daily variability.  


