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http://gmao.gsfc.nasa.gov/research/merra/merra-land.php 
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Motivation for MERRA-Land: Precipitation 

 Correct MERRA precipitation with gauge-based 
precipitation observations to the extent possible. 

Reichle et al.  J Clim (2011) 
doi:10.1175/JCLI-D-10-05033.1 

Synoptic-scale errors 

1981-2008 [mean=-0.03 mm/d] Aug 1994 [mean=-0.04 mm/d] 

Long-term bias 

MERRA – GPCPv2.1 



MERRA-Land precipitation corrections 

MERRA 
Reanalysis 
Hourly 
0.5° x 0.67° 

For each day and each 0.5° x 0.67° 
grid cell, the corrected MERRA 
precipitation (almost) matches 
CPCU observations. 

CPCU 
Gauges 
Daily 
0.5° x 0.5° 
 

MERRA + CPCU 
(hourly, 0.5° x 0.67°) 

Rescale MERRA 
separately for each day and 

0.5° x 0.67° grid cell  

Use gauge-based NOAA 
CPC Global Unified (CPCU) 
precipitation b/c of improved  
latency and spatial/temporal 
resolution. 



MERRA precipitation and radiation forcing 

Too much 
canopy 
evaporation  
 not enough 
water reaches 
the soil! 

MERRA precip. 
has short-term 
errors in  
1. intensity,  
2. timing, and 
3. consistency 

with SW 
radiation 
forcing. 

Additional fix: 
Change Catchment model interception parameters. 

Near Gainesville, FL 



Precipitation MERRA MERRA + 
CPCU 

Surface Tair, 
Qair, SW, LW, 
etc. 

MERRA MERRA 

Catchment 
model version 

MERRA 
(v5.2.0) 

“Fortuna” 
(v5.7.2) 

Data product 

 

MERRA 
“replay” 
 [Close to 

MERRA but not 
perfect.] 

MERRA-Land 

Land-only (“off-line”) replay 

Gauge-
based 

estimates 

Latest 
GEOS-5 
model 

version 

1980-2012, hourly, 
0.5⁰ by 0.67⁰ 
Available at NASA 
GES-DISC  
(alongside MERRA) 



0.6

0.24 0.24

0.24

(b) 

(c) 

Interception loss frac. = canopy evap. / rainfall  (2003-2007)  
MERRA Revised Catchment model 

“Observations” (Miralles et al. 2010) 

Improvement everywhere from revised interception parameters (b). 
Additional improvement from precipitation corrections (c). 

I = 0.31 

I = 0.06 

MERRA-Land (“final") 

I = 0.06 

I = 0.07 



Latent heat flux (August 1994) 

MERRA 

Multi-product average 
 (Jimenez et al. 2011) 

W/m2 

MERRA-Land has more 
realistic LH over Amazon 
during dry season. 
Attributed to revised 
interception parameters and 
precipitation corrections. 

 mean = 58 Wm-2 

 mean = 56.3 Wm-2 

MERRA-Land (“final”) 

 mean = 49 Wm-2 
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Soil moisture validation (2002-2009) 

MERRA-Land has better 
soil moisture anomalies 
than MERRA (attributed to 
precipitation corrections). 
 
MERRA-Land root zone 
skill better than ERA-
Interim. 

Skill (pentad anomaly R)  
v. SCAN in situ observations 



Runoff 

Precipitation corrections yield significantly better runoff for 3 basins. 
MERRA and MERRA-Land (0.5 deg) better than ERA-Interim (“1.5 deg”). 
Not shown: In all cases the revised interception parameters yield 
improved runoff anomalies (albeit not significant). 

Validation against naturalized 
streamflow observations from 9 “large” 
and 9 “small” basins (~1989-2009). 

NB: Numbering does not match figure below. 



NOT 

SHOWN 

Snow depth 
MERRA-Land v. CMC snow analysis 

Pentad anomaly R (2002-2009) 

CMC snow analysis 
Density  [stations/10,000 km2] 

Note: No snow analysis in 
MERRA or MERRA-Land. 

• MERRA and MERRA-Land have similar skill. 
• Similar results for comparison vs. in situ obs. (583 stations). 
• Similar results for snow water equivalent (SWE). 
• Step in 1998/99 in CPCU high-lat avg precip.  step in snow mass. 

Low R values 
in areas w/o 
in situ obs. 



http://gmao.gsfc.nasa.gov/merra/merra-land.php 
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Satellite remote sensing of (surface) soil moisture 

2009-present 
L-band passive 
40 km resolution 
interferometric & 
multi-angular 

2002-2011 
C/X-band passive 
40 km resolution 

AMSR-E (Aqua) 

ASCAT (Met-op) 

SMOS 

SMAP 

2007-present 
C-band active 
40 km resolution 

Launch: 2014 
L-band active/passive 
3-40 km resolution 

Frequency 
band 

Sensing 
depth 

C/X-band 1 cm 
L-band 5 cm 



Soil moisture assimilation 

Validated with in situ data 

Anomalies ≡ mean seasonal cycle removed 

Skill increases significantly 
through data assimilation.   
Similar improvements from 
AMSR-E and ASCAT. 
Root-zone not observed by 
satellite.  Improvements may 
be critical for applications. 
Metric: Anom. time series corr. coeff. 

Draper et al. (2012), GRL, doi:10.1029/2011GL050655. 



Anomalies ≡ mean 
seasonal cycle removed 

Skill metric: Anom. time 
series corr. coeff. R 
Soil moisture skill 
increases with 
• precipitation 
corrections and  
• assimilation of 
surface soil 
moisture retrievals. 
Improved root zone 
soil moisture! 

Precipitation corrections v. retrieval assimilation 

Different precipitation  forcing inputs 

Skill v. SCAN in situ obs 
AMSR-E retrievals

No assimilation

AMSR-E assimilation

Liu et al.  JHM (2011) doi:10.1175/JHM-D-10-05000. 



surface root zone surface root zone 

Precipitation 
corrections and 
retrieval 
assimilation 
contribute 
approximately: 
• evenly and 
• independently  
to skill 
improvement. 
 

Results from single 
sensor per watershed 
(SCAN data) are 
consistent with those 
from distributed CalVal 
in situ sensors. 

Precipitation corrections v. retrieval assimilation 

Liu et al.  JHM (2011) 
doi:10.1175/JHM-D-10-05000. 

∆R = skill improvement over 
reference model integration 

Additional Contribution 
of Retrieval Assimilation 

Contribution of 
Precipitation Corrections 

Additional Contribution of 
Precipitation Corrections 

Contribution of 
Retrieval Assimilation 



For the SMAP L4_SM product 
use brightness temperature 
(radiance) assimilation. 
 
Need L-band radiative transfer 
model (RTM). 

SMAP

Soil moisture assimilation 



RTM parameters 

1/1/2011 – 1/1/2012 
(validation period) 

Literature values for 
parameters yield 
strongly biased Tb. 

SMOS 

L-band brightness temp.: SMOS vs. Catchment/RTM 
Annual mean [K] 

Prescribed: 
SMAP Level2 ATBD 
LMEB literature 
SMOS-monitoring at 
ECMWF (CMEM-EC) 

Model 
SMAP LMEB 

CMEM-EC 

H-pol 
42.5⁰ 



RTM parameters 

1/1/2011 – 1/1/2012 
(validation period) 

Calibrated parameters 
yield mostly unbiased 
long-term mean Tb. 

Calibrated: 
From multi-angular 
calibration during  
1/1/2010 – 1/1/2011 

SMOS 

L-band brightness temp.: SMOS vs. Catchment/RTM 

Prescribed: 
SMAP Level2 ATBD 
LMEB literature 
SMOS-monitoring at 
ECMWF (CMEM-EC) 

Model 
SMAP LMEB 

CMEM-EC Calibrated  

H-pol 
42.5⁰ 

Annual mean [K] 



Seasonally varying, residual biases after calibration. 
Need to address in assimilation system. 

RFI in V-pol from Distant-Early-Warning (DEW) Line?  
Suppressed in H-pol through calibration? 

Time (1/1/2010-1/1/2012) 

H-pol V-pol 

Time (1/1/2010-1/1/2012) 

K 

Bias ≡ SMOS minus Model,  average over 6 angles,  ascending only 

L-band brightness temp.: SMOS vs. Catchment/RTM 
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SWE anomalies (40.38N, 106.66W) 

Assimilate AMSR-E snow water equivalent (SWE)? 

SWE  
1 Mar 2004 

AMSR-E MERRA cm 
25

20

15

10

5

0

Example 1: 
Anomaly time 
series at 
SNOTEL site. 

Satellite SWE retrievals not (yet) suitable for assimilation.   
Radiance assimilation?  

De Lannoy et al.  WRR (2012) 

Example 2:  
Snapshot over 
North America 



Bias 
[K] 

RMSE 
[K] 

Anom. 
R   [-] 

Artificial Neural Network for  
GEOS-5 global snow model 
Input: Snow water equivalent, density, 
liquid water content, snow/air/soil 
temperature) 
Output:  Tb (H-/V-pol, 10/18/36 GHz) 
 

Robust forward modeling of  
AMSR-E Tb using GEOS-5. 

Forman et al. (2012), IEEE/TGARS, submitted. 

GEOS-5 vs. AMSR-E brightness temp. (18 GHz, V-pol) 
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SCLP) Land surface temperature 

(MODIS, AVHRR,GOES,… ) 

Water surface elevation 
(SWOT) 

Snow cover fraction  
(MODIS, VIIRS) 

Terrestrial water storage (GRACE) 
Land data assimilation system 

Precipitation  
(TRMM, GPM) 

Vegetation/Carbon  
(AVHRR, MODIS, DESDynI, 
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soil 
moisture snow,  

precip. 

veg., snow, radiation 

LST Radiation  
(CERES, CLARREO ) 

SUMMARY 
1. Supplemental MERRA-Land data product provides enhanced land 

surface reanalysis estimates (through use of precipitation 
observations and land model improvements). 

2. Retrieval-based soil moisture assimilation can further improve 
reanalysis.  Radiance-based soil moisture analysis for SMOS and 
SMAP requires careful calibration of radiative transfer model. 

3. Snow water equivalent retrievals not (yet) suitable for 
assimilation.  Developed neural network-based forward operator for 
radiance assimilation.  

4. Other topics: Assimilation of skin temperature, snow cover, and 
terrestrial water storage not discussed in this presentation. 

OUTLOOK 
1. Focus has been on univariate, off-line assimilation. Need multi-

variate analysis of soil moisture, LST, snow cover, and snow water 
equivalent. 

2. We are integrating land and atmospheric assimilation to allow 
feedbacks in coupled land-atmosphere analysis system.  

3. Assimilate satellite-based vegetation/carbon observations. 



THANK YOU FOR YOUR ATTENTION! 



Snow cover extent (SCE) v. MODIS 

Larger bias in MERRA-Land snow cover extent vs. MODIS 
(compared to same in MERRA) due to parameter change in 
snow model (WEMIN). 



Land surface temperature (LST) assimilation 

“Model” LST better than ISCCP. 
Assimilation reduces RMSE (by up to 
~0.7 K), increases anomaly R (by up to 
0.05). 
Model formulation impacts assimilation:  
Dynamic bias correction key for CLSM. 
Fluxes can be MUCH worse if bias is 
not addressed (not shown). 

Reichle et al. (2010), JHM, doi:10.1175/2010JHM1262.1. 

Assimilate 
ISCCP LST 
retrievals into 
two off-line 
land models. 

Validate 
against in 
situ obs. 

s0: without a priori scaling
b0, b8: without/with dyn bias corr



Assimilation of GRACE terrestrial water storage (TWS) 

GRACE Assimilation 
Terrestrial water storage anomaly (Jan. 2003 – Jun. 2006 loop) 

GRACE measures  
large-scale TWS 
= groundwater  
+ soil moisture  
+ snow 
+ surface water 

Assimilation yields: 
• fine-scale information subject to 

GRACE basin-scale constraints 
• better runoff  than model (not shown). 

Zaitchik et al. (2008) J. Hydrometeorology, doi:10.1175/2007JHM951.1 



Assimilation disaggregates GRACE data into snow, soil moisture, and groundwater. 
Assimilation estimates of groundwater better than model estimates. 

Assimilation

No assimilation
Validation against 
observed 
groundwater: 

RMSE = 18.5 mm 

R2 = 0.49 

Assimilation of GRACE terrestrial water storage (TWS) 

RMSE = 23.5 mm 

R2 = 0.35 

Zaitchik et al. (2008) J. Hydrometeorology, doi:10.1175/2007JHM951.1 
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