A Water Cycle Perspective on the Connection Between Precipitation Extremes and Circulation Anomalies

Paul Dirmeyer^{1,2}, Jiangfeng Wei², Michael Bosilovich³ and David Mocko^{4,3}

¹George Mason University

²Center for Ocean-Land-Atmosphere Studies

³NASA/GSFC/GMAO

⁴SAIC

Acks: Rolf Reichle, Qing Liu, Tim DelSole, Jennifer Adams

Quasi-Isentropic Back Trajectories

- The idea for the technique is borrowed from air pollution meteorology (e.g., Merrill et al. 1986 *Mon. Wea. Rev.*).
- Water vapor is treated as a passive tracer between time of evaporation from surface and time of condensation/ precipitation.
- The key to the technique is treatment of the endpoints.
 - Traces begin at precipitation events, go backwards in time.
 - Each trace generates a PDF of evaporative sources; these are aggregated over many traces for each grid point, pentad.
 - Further aggregation can be performed in space or time to estimate sources for regions, months, seasons, etc.

QIBT Methodology

• Lagrangian "parcels" are used to estimate moisture transport *a posteriori*.

 Many parcels are launched at random humidityweighted altitudes at times of precipitation.

• 6-hourly 3-D atmospheric data are used to trace parcels backward in time (45-minute time steps).

 Evaporative contribution during each time step is proportional to ET/PW.

Data Sets Used

- NASA MERRA Reanalysis:
 - Precipitation (corrected by CPC Unified precipitation at pentad timescale)
 - ET (corrected by MERRA-Land* at pentad timescale)
 - 3-D fields of Temperature, Humidity, Wind (U and V)
- 6-hourly data, Jan 1979 Dec 2005
- 1/2° x 2/3° resolution

^{*} Reichle et al., 2011: J. Climate.

Climo. Wet 100 200 400 700 1000 1500

Evaporative Source

 Example (left) of 1979-2005 JJA moisture source for rainfall over the DC area (single MERRA grid box), the 3 driest years [middle panel], and the 3 wettest years [bottom].

ppm – normalized so global integral = 10^6

Global Source for Continental Precipitation

- Globally, about half of the moisture supplying precip over land evaporates from land.
- Maximum land source in JJA, minimum in SON.
- Tropical and subtropical oceans are the main oceanic sources.

Recycling Ratio

- Unscaled ratio for ½°x¾° grid boxes is shown.
- Strong seasonal cycle in most locations.
- Two main controls:
 - Local evaporation rate
 - Moisture transport (winds)
- Agrees well with previous distributions.

Climo. Wet 100 200 400 700 1000 1500

Evaporative Source

- Example (left) of 1979-2005 JJA moisture source for rainfall over the DC area (single MERRA grid box), the 3 driest years [middle panel], and the 3 wettest years [bottom].
- The "blobs" are effectively PDFs and there exists a tool to compare them objectively....

ppm – normalized so global integral = 10^6

Tool: Relative Entropy (RE)

 Relative entropy (also called Kullback-Leibler Divergence or Information Divergence) measures the difference between two probability distributions p and q:

$$RE(x) = \int p(y \mid x) \log \frac{p(y \mid x)}{q(y)} dy$$

- This measure from information theory is often applied in statistics, communications, finance.
- x can be multidimensional for data on a finite grid:

$$RE_{p,q} = \sum_{i} p(i) \log \frac{p(i)}{q(i)}$$

Properties of RE

$$RE_{p,q} = \sum_{i} p(i) \log \frac{p(i)}{q(i)}$$

- $RE \ge 0$
- RE = 0 only if the two distributions p and q are identical.
- $RE_{p,q} \neq RE_{q,p}$, but ranking is preserved, and RE is invariant to nonlinear transformations.
- Here, p is the climatological evaporative source for rainfall over a given area, and q is the source conditioned on extremes in precipitation ("drought" and "flood" deciles).
- At every land grid box we calculate RE based on its evaporative sources – plot maps of RE.

Drought Years vs. Climatology

 Maps show RE between monthly climatological evaporative moisture sources calculated at each point and the sources for the 3 driest years.

Drought Years vs. Climatology

- Maps show RE between monthly climatological evaporative moisture sources calculated at each point and the sources for the 3 driest years.
- Small values ≈ circulation (moisture source) changes are not associated with drought.

Must be another cause (stability, subsidence, L-A feedback).

Evaporative Moisture Sources from MERRA

Wet Years Signal

- Wet years show similar large-scale patterns.
- Note that the highest RE values are usually over arid regions require a circulation change to bring in moisture.

Evaporative Moisture Sources from MERRA Relative Entropy — 27—Year Mean vs 3 Wettest Years

Extremes Associated with Circulation

- The ratio of the REs (log of ratio shown) indicates "droughts" are more likely than "floods" to be associated with circulation changes.
- Implies wet spells are either more locally driven or more random in nature.
- But droughts have longer time scale than floods – Is this a fair comparison?

In(RE[Dry]/RE[Wet])

MAM

JJA

Evaporative Moisture Sources from MERRA

RE Based on Pentads

- Seasonal averages based on wettest of pentads show generally higher values than monthly.
- Gulf Coast / South floods are not associated with changing moisture sources during "hurricane season". East Coast is.

10 May 2012

Seasonal RE Based on Pentad vs. Monthly Data

 Comparison shows for many places, summer is most likely to have a wet season caused by brief anomalous fetches of moisture (atmospheric rivers).

• For DJF it's N. Cal. and Pacific NW.

10 May 2012

Summary

- Back trajectories of water vapor from precipitation (sinks) to evaporation (sources) reveal a new perspective on the atmospheric water cycle (mean and variability).
- We can <u>quantitatively</u> compare variations in source regions during dry/wet periods to elucidate causes.
- To do: Compare to MERRA model (GEOS5) with WV tracers.

J. Wei et al., **Poster UA-48**: "Where Does the Irrigation Water Go? An Estimate of the Contribution of Irrigation to Precipitation Using MERRA."

D. Mocko et al., **Poster AT-39**: "Water Vapor Tracers in MERRA Replay Mode Using the NASA/GSFC GEOS-5 GCM."

Ongoing work supported by NASA MAP (Grant NNX09AI84G)

Only changed one word...

