What Data Assimilation Increments of an Eddy-Permitting Global Ocean Reanalysis tell Us about Deep Convection in the Labrador Sea

Nicolas Jourdain

LEGI-CNRS, Université de Grenoble, France University of New South Wales, Sydney, Australia

Bernard Barnier *LEGI-CNRS, Université de Grenoble, France*

Co-authors:

J. Le Sommer, T. Penduff, J.-M. Molines *LEGI-CNRS, Université de Grenoble, France*

J. Chanut, N. Ferry, L. Parent, G. Garric et al. (MERCATOR R&D) Mercator-Ocean, Toulouse, France

OUTLINES

Labrador Sea

- Circulation and seasonal convection cycle
- Role of Mesoscale Eddies

Simulations of Deep Ocean Convection in the Labrador Sea

- In eddy permitting model hindcasts (no assimilation)
- In GLORYS eddy permitting reanalysis

GLORYS Eddying Reanalysis

- Interpreting data assimilation increments

Conclusion

OUTLINES

Labrador Sea

- Circulation and seasonal convection cycle
- Role of Mesoscale Eddies

Simulations of Deep Ocean Convection in the Labrador Sea

- In eddy permitting model hindcasts (no assimilation)
- In GLORYS eddy permitting reanalysis

GLORYS Eddying Reanalysis

- Interpreting data assimilation increments

Conclusion

A key region for the global ocean meridional overturning circulation

Net Air-Sea Flux

-500

Convection/Re-stratification seasonal cycle: a schematic

Marshall and Schott, 1999 Jones and Marshall, 1997

Convection/Re-stratification seasonal cycle: a schematic

Mixed layer depth in

Convection/Re-stratification seasonal cycle: observations

Convection Convective fronts

Deep convection limited to Southwestern Labrador Sea

Sub-surface re-stratification

Few winter observations of the 3-D field

OUTLINES

Labrador Sea

- Circulation and seasonal convection cycle
- Role of Mesoscale Eddies

Simulations of Deep Ocean Convection in the Labrador Sea

- In eddy permitting model hindcasts (no assimilation)
- In GLORYS eddy permitting reanalysis

GLORYS Eddying Reanalysis

- Interpreting data assimilation increments

Conclusion

Evidence of mesoscale eddies

Sea Surface Temperature (10th July 1992)

Different types of eddies identified by generation process

Irminger Rings - IRs

Hz shear instability of WG Current at Cape Desolation

Boundary Current Eddies - BCEs

Continously generated by mixed baroclinic/barotropic instability of the boundary current

Convective front Eddies - CEs

Seasonal baroclinic instability of the convective front

Region of deep convection

Influence of those respective eddies on the convection cycle?

Role of Mesoscale Eddies

Role of mesoscale eddies

Irminger Rings - IRs Prevent convection to occur in the Northern Labrador Sea

Boundary Current Eddies - BCEs BCEs are continuously fluxing heat out of the boundary current in the interior

Convective front Eddies - CEs CEs relay the BCEs to accelerate the flux of heat into the convection region in spring

Region of deep convection

Role of Mesoscale Eddies

Role of mesoscale eddies

Boundary Current Eddies - BCEs BCEs are continuously fluxing heat out of the boundary current in the interior

Convective front Eddies - CEs CEs relay the BCEs to accelerate the flux of heat into the convection region in Spring

Region of deep convection

OUTLINES

Labrador Sea

- Circulation and seasonal convection cycle

- Role of Mesoscale Eddies

Simulations of Deep Ocean Convection in the Labrador Sea

- In eddy permitting model hindcasts (no assimilation)
- In GLORYS eddy permitting reanalysis

GLORYS Eddying Reanalysis

- Interpreting data assimilation increments
- Conclusion

Eddy Permitting Models

- Resolution allows for the generation of mesoscale eddies

-Eddy statistics different from observed

Example: DRAKKAR ORCA025 configuration

NEMO3.2 OGCM + LIM2 EVP Sea-Ice model:

Resolution:

- -Global 1/4° ORCA-type grid 1442x1021 grid points
- Hz grid: 25 km to 10 km.
 46, 50, or 75 vertical levels from 1 m at the surface to 200 m at the bottom

Atmospheric forcing:

- Bulk Formulation -ERA-Interim/ERA40
- reanalysis products:

Eddy permitting (1/4°) models

1800

1600

1400

- Greatly underestimate eddy generation in the Lab.Sea
- Overestimates the convection depth
- Mis-locates the convective patch

Mixed Layer Depth (i.e. Convection Depth)

Re-stratification

Eddy resolving 1/15°

Eddy permitting (1/3°)

Eddy permitting models do not re-stratify the sub-surface ocean in summer

Consequences

 Ocean vertically homogeneous in fall

-Convection depth too deep the following year

Large temperature (salinity)
 biases are induced in the long term

Re-stratification

No eddies (1/3°), no restratification in summer

> Resolved eddies (in 1/15° grid) reconstruct the stratification during summer

OUTLINES

Labrador Sea

- Circulation and seasonal convection cycle

- Role of Mesoscale Eddies

Simulations of Deep Ocean Convection in the Labrador Sea

- In eddy permitting model hindcasts (no assimilation)

- In GLORYS eddy permitting reanalysis

GLORYS Eddying Reanalysis

- Interpreting data assimilation increments

Conclusion

GLORYS (Global Ocean ReanalYsis and Simulations):

 Is a cooperative project between CNRS and Mercator-Ocean

- aims at producing global ocean/sea-ice reanalyses with an eddy permitting model (1/4°)

GLORYS1: 2002-2009

GLORYS2: 1993-2010

FREE RUN (no assimilation)

NEMO OGCM Drakkar ¼° global configuration

Labrador Sea Convection Cycle in GLORYS1

JFM mixed layer depth (2002-2007 mean), in

FREE RUN (left)

GLORYS1V1 (right).

Assimilation improves the location of the Mixed Layer Depth

Convection in GLORYS

Labrador Sea Convection Cycle in GLORYS1

Data assimilation reconstructs the stratification in the sub-surface and deep ocean

Labrador Sea Convection Cycle in GLORYS1

6000 Free run Nb of meshes / year (Aug.-Jul.) 5000-MLD (m) 2000-2600 4000-1500-2000 1000-1500 GLORYS 3000-500-1000 2000 **JULNANIA** 1000-0 2002-2003 2003-2004 2004-2005 2005-2006 2007-2008 2008-2009* 2001-2002 2006-2007

Events of very large winter convection depth are less frequent in GLORYS

Convection in GLORYS

Labrador Sea Convection Cycle in GLORYS1

Yashayaev & Loder, GRL, 2009

Data assimilation improves the representation of the Mixed Layer Depth

> How? Where? When?

OUTLINES

Labrador Sea

- Circulation and seasonal convection cycle
- Role of Mesoscale Eddies

Simulations of Deep Ocean Convection in the Labrador Sea

- In eddy permitting model hindcasts (no assimilation)
- In GLORYS eddy permitting reanalysis

GLORYS Eddying Reanalysis

- Interpreting data assimilation increments

Conclusion

Buoyancy budget of the convective patch

Surface buoyancy flux due to the atmospheric forcing

$$B = \frac{g\alpha}{c_p}Q_{net} - g\beta(E - P)s$$

Buoyancy flux between 0-100m due to data assimilation increments

$$B_{inc} = \int_{-100}^{0} \rho g \alpha \left(\frac{\delta T(z)}{\delta t} \right)_{inc} dz - \int_{-100}^{0} \rho g \beta \left(\frac{\delta s(z)}{\delta t} \right)_{inc} dz$$

$$T,S \text{ assimilation increments}$$

Buoyancy budget of the Labrador Sea

-Surface buoyancy fluxes are similar between GLORYS and Free run

-Increments provide a correction which:

-increases the winter buoyancy loss, and

- suggests that the ECMWF forcing could underestimate the winter heat loss.

Interpreting data assimilation increments

Buoyancy budget of the Labrador Sea

Increments (Binc) provide:

-a greater correction of the interior buoyancy

Why correction is more important at depth? Because:

- vertical mixing is not well parameterized in the model

- The lateral flux of mesoscale eddies is introduced by the data assimilation

Analysis of the Temperature increments between 80 m & 1000 m

Heat flux equivalent to temperature increments between 80 m and 1000 m depth. (W/m2)

Increments could be interpreted in terms of heat transfer between the boundary current and the ocean interior

Increments could be interpreted in terms of heat transfer between the boundary current and the ocean interior

Anti-correlated variations of 80-1000m heat content betwwen interior and boundary current

Increments could be interpreted in terms of heat transfer between the boundary current and the ocean interior

Anti-correlated variations of 80-1000m heat content betwwen interior and boundary current

Analysis of the Temperature increments between 80 m & 1000 m

3D EOF of Temperature increments

Analysis of the Temperature increments between 80 m & 1000 m Mode 1

3D EOF of Temperature increments

Analysis of the Temperature increments between 0 m & 200 m Mode 1

Heat flux equivalent to temperature increments between 80 m and 1000 m depth. (W/m2)

Effect of Irminger Ring Effect of Convective and boundary current Eddies

Increments are consistent with eddy fluxes produced by very high resolution models

OUTLINES

Labrador Sea

- Circulation and seasonal convection cycle
- Role of Mesoscale Eddies

Simulations of Deep Ocean Convection in the Labrador Sea

- In eddy permitting model hindcasts (no assimilation)
- In GLORYS eddy permitting reanalysis

GLORYS Eddying Reanalysis

- Interpreting data assimilation increments

Conclusion

Conclusion

- Eddy permitting models in the Lab Sea
 - do not reproduce realistically the deep convection cycle
- Data assimilation enables a realistic convection cycle,
 allows the summer re-stratification of the whole water column.
- Temperature assimilation increments
 - exhibit spatial patterns and time variability similar to the eddy fluxes diagnosed in very high resolution models
 - suggest that model flaws in the Lab Sea are less due to flaws in the atmospheric forcing than to a poor representation of the various types of mesocale eddies.