Using NCEP/NCAR reanalysis data to study the potential predictor for the timing of spring onset in North and northeastern China

Cheng QIAN 1,2,*, Congbin FU 1, Zhaohua Wu 3, Zhongwei YAN 1 *E-mail: qianch@tea.ac.cn
1. Key Laboratory of Regional Climate–Environment Research for Temperate East Asia, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
2. LASG, Institute of Atmospheric Physics, Chinese Academy of Sciences, Beijing, China
3. Department of Earth, Ocean and Atmospheric Science & Center for Ocean–Atmospheric Prediction Studies, Florida State University, Tallahassee, USA

Background
Growing season length is one of the most notable climate indices for studying climate change. Many studies have reported an extended growing season at mid-high latitudes, mainly due to an earlier onset of spring. The timing of the spring season has a large influence on natural ecosystems and human activities such as agricultural planning, including spring sowing and cultivation of plantation and poultry, and spring tourism. Therefore, predicting the onset of spring is of significant socioeconomic importance. In this study, the sea level pressure (SLP) and wind at 850 hPa from NCEP/NCAR reanalysis data are used to study the atmospheric circulation pattern in East Asia during winter/spring transition time and potential predictor for the timing of spring onset in North and northeastern China.

Data and Methods

Data: 1. The China homogenized historical daily mean surface air temperature (SAT) of 1951–2004; 2. NCEP/NCAR reanalysis data (SLP and wind at 850 hPa) for the period 1951-2004
Methods: the adaptive and temporally local time-series analysis tool - Ensemble Empirical Mode Decomposition (EEMD) (Wu and Huang, 2009) is applied to isolate annual cycle from interannual and longer timescale component (Fig. 1). The timing of spring onset is uniquely determined as the date of the first intersection of 5°C threshold with the low-frequency part of daily SAT series containing the annual cycle and longer timescale components (ALC) (Fig. 2).

Validation of EEMD method in extracting annual cycle

Using EEMD to extract the amplitude-frequency modulated annual cycle (MAC) from a noisy synthetic time series (Fig. 3).

\[y(t) = [1 + 0.2 \sin(0.5 + 0.005 \text{year})] \sin[\theta(t)] + N(t) \]

\[\theta(t) = \frac{2 \pi}{T} + 0.01 \text{[cos(0.11 \text{[year]} - 0.5 \text{[year]} + 0.5]} \]

Validation of EEMD to extract annual cycle

Fig. 1 A diagram of the process of decomposing daily SAT series at Beijing using the EEMD method. HF: high frequency (intra-annual); AC: annual cycle; LF: low frequency (interannual and longer timescale).

Fig. 2 Comparisons of different methods in determining the onset of the climatic spring season from daily SAT series in 1991 at Stockholm.

Results and Conclusions

Conclusion 1. Spring at Beijing has arrived significantly earlier by about 2.98 day per decade, of which about 1.85 day per decade is due to changes in the annual cycle and 1.13 day per decade due to the long-term warming trend. Variations in the annual cycle could cause as much as a 20-day shift in the onset of spring from one year to another.

Conclusion 2. The onset of spring has been advancing all over northern China, but at different rates between the east and west parts of the region. These differences are somehow unexplainable by the zonal pattern of the warming trend over the whole region, but can be explained by opposite changes in the spring phase of the MAC, i.e. advancing in the east while delaying in the west. In the east of northern China, the change in the spring phase of MAC explains 40–60% of the spring onset trend and is attributable to a weakening Asian winter monsoon. The average sea level pressure in Siberia (55-80° N, 50-110° E), an index of the strength of the winter monsoon, could serve as a potential short-term predictor for the onset of spring in the east of northern China.

References