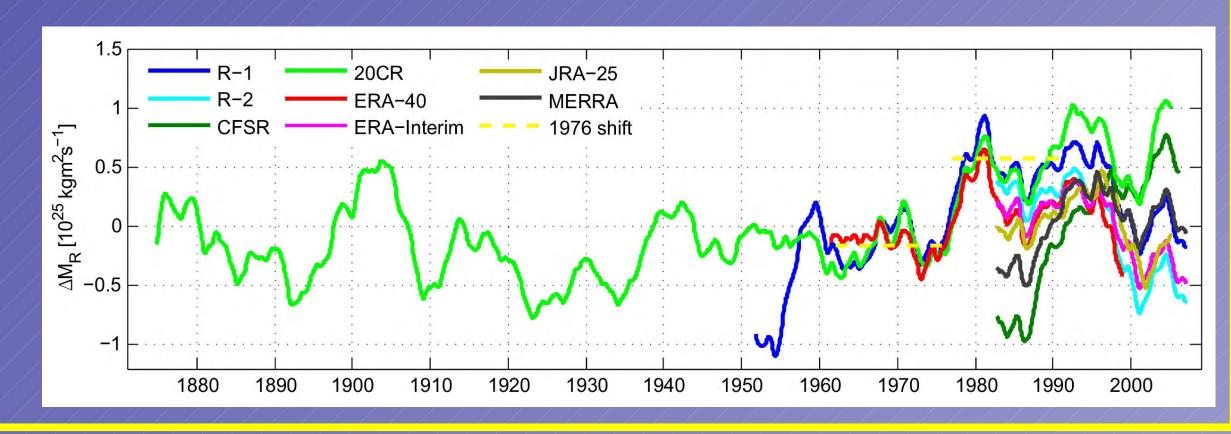
An Intercomparison of Interdecadal Variability and Climate Shifts in Reanalysis **Datasets and Climate Model Simulations**

Houk Paek¹ and Huei-Ping Huang Mechanical & Aerospace Engineering Program, SEMTE, Arizona State University ¹Corresponding Author


1. Summary

Using atmospheric angular momentum (AAM) as a climate index, the decadal-to-interdecadal variability and the 1976 climate shift event are compared among eight reanalysis datasets. It is found that the decadal-to-interdecadal variability, extracted by band-pass filtering, is very similar among all of those datasets for the 2nd half of the 20th century. The timing and magnitude of the 1976 shift are also consistent across all datasets. The more noticeable discrepancies are in the longterm mean and the long-term trend. After removing these slowest components, the time series of the band-pass-filtered AAM in 20CR is almost indistinguishable from those in other datasets. After establishing our confidence in the reanalyses, they are used as observation to cross-validate the decadal-to-interdecadal variability in centennial climate model simulations in CMIP5.

2. Interdecadal Climate Shift

Figure 1 shows the 5-year low-pass filtered time series of global relative atmospheric angular momentum (AAM) calculated from the 3-D zonal wind of different reanalysis datasets. All of them exhibit the 1976/77 shift (to a warmer Tropics) and an overall upward trend for the 20th century.

3. Detection of the climate shift events in CMIP5 simulations using criteria based on the amplitude and tendency of AAM

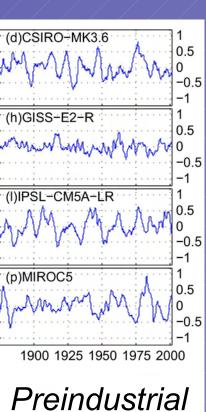
1 0.5	(a)BCC-CSM1.1	F
0 0.5	an provide manage of the second	
-1		ł
1	(e)FGOALS-s2	F
0.5	A JAN JAMAN ANA ANA	ŀ
0 0.5	AMM/MM/MMM	l
-1		ŀ
1	(i)HadGEM2-CC	F
0.5	A AMA MAN	ŀ
0 0.5	my Marris And	
-1		F
1	(m)IPSL-CM5A-MR	F
0.5	and and a maint	ł
0	ma / www.	F
0.5 _1	V	t
1	(a)MPI-ESM-I R	F
0.5		ŀ
0	my will ful my for the	þ
0.5	······································	ŀ
-1	75 1000 1025 1050 1075 2000	t

(b)CanESM2
(f)GFDL-CM3
MAMMAN MANANA MANANA
(j)HadGEM2-ES
mmm
(n)MIROC-ESM
mmm
(r)MRI-CGCM3

]	(c)CNRM-CM5
	My monther manine with the
	(g)GFDL-ESM2M
ļ	(g)GFDL-ESM2M
	(k)INM-CM4
	mmmmmmm
	(o)MIROC-ESM-CHEM
	manummen
1	(s)NorESM1-M
	in Awa Arman
	······

	(d)CSIRO-MK3.6
]	(h)GISS-E2-R
	man manually
Ì	(I)IPSL-CM5A-LR
	MMM
	(p)MIROC5
	Ammun
	1900 1925 1950 1975
1	

his month man


CMIP5 runs exhibit a wide range of behaviors in the simulated decada and interdecadal variability.

A sharp shift of AAM lik the 1976 event is not found in PICNTRL, but they emerge in the Historical runs and the RCP8.5 run

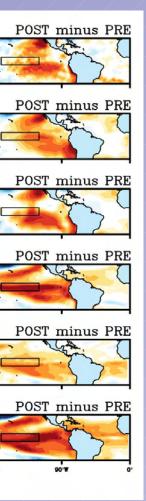
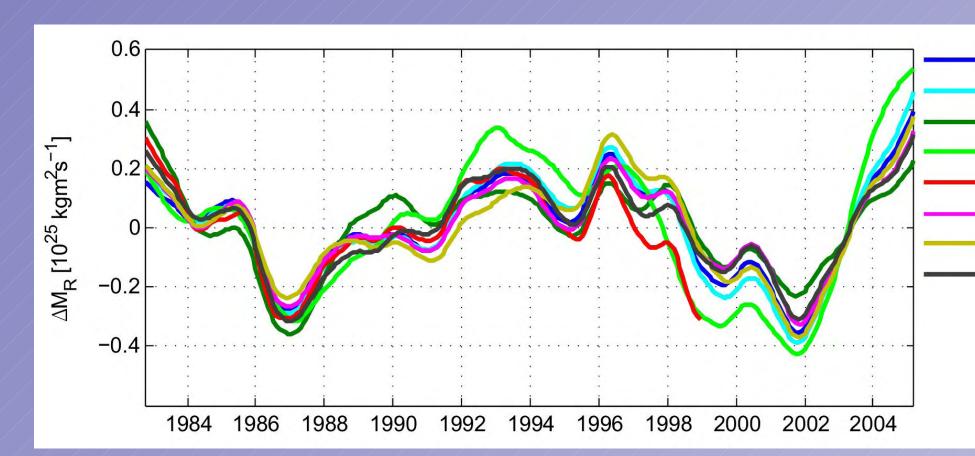
(e)FGOALS-s2

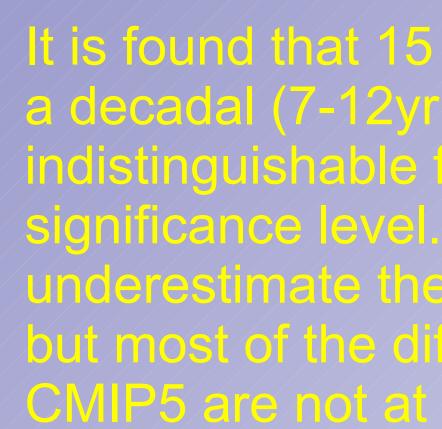
4. Tropical SST pattern in CMIP5 simulations associated with the shift events

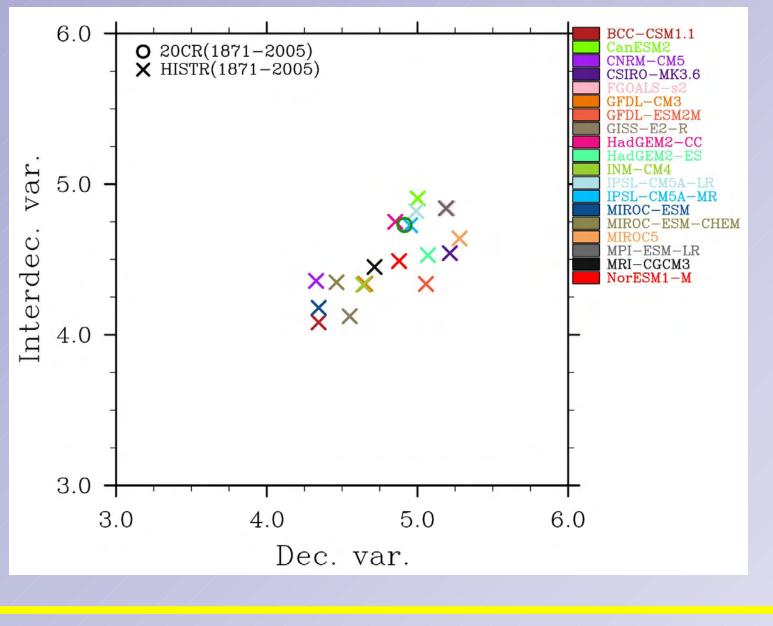
(a) HadISST	POST(1977-1991)	PRE(1962–1976)	I
30'N 16'N 0' 16'8 30'5			
(b) Kaplan SST	POST(1977-1991)	PRE(1962-1976)	I
15'N			
(c) ERSST	POST(1977-1991)	PRE(1962-1976)	I
0 157 307			
(d) CanESM	POST(1936-1950)	PRE(1921-1935)	I
30'N 16'N 16'S 30'S			
(e) IPSL-CM5A-LR	POST(1923-1937)	PRE(1908-1922)	I
30'N 16'N 0 15'3 30'S			
(f) IPSL-CM5A-MR	POST(1936-1950)	PRE(1921-1935)	H
30'N 15'N 0' 15'3 30'8 0' 80'E 160			0.8

Fig. 2 Same as Fig.1 but for CMIP5 simulations.

	(b)CanESM2	(c)CNRM-CM5 (g)GFDL-ESM2M (g)GFDL-ESM2M (k)INM-CM4 (o)MIROC-ESM-CHEM (o)MIROC-ESM-CHEM (s)NorESM1-M	(d)CSIRO-MK3.6 (h)GISS-E2-R (i)IPSL-CM5A-LR (p)MIROC5 (p)MIROC5 (p)MIROC5 (p)00 1925 1950 1975 200
2000	1900 1925 1950 1975 2000	Manana	Historical
	(b)CanESM2	(c)CNRM-CM5 (g)GFDL-ESM2M (k)INM-CM4	(h)GISS-E2-R (h)GISS-E2-R (l)IPSL-CM5A-LR
	(n)MIROC-ESM	(o)MIROC-ESM-CHEM	(p)MIROC5
Mar	(r)MRI-CGCM3	(s)NorESM1-M	2030 2050 2070 20


Fig. 3 **Tropical SST** associated with the shift events from observation and simulations. The black box is the Nino3.4 region.


RCP8.5

5. Comparison of the decadal-to-int variability in reanalysis and CMIP5 sim

Fig. 4 Detrended time series of AAM for the post-1979 period (long-term mean and trend removed). A good agreement is found in the decadal-to-interdecal variability among different reanalysis datasets.

Acknowledgment: This study is supported by the Office of Science (BER), U.S. Department of Energy.

email: hpaek@asu.edu

20CR ERA-Interim JRA-25 - MERRA

Fig. 5 Decadal and interdecadal variance of AAM in 20CR and CMIP5.