4th WCRP International Conference on Reanalyses 7-11 May 2012, Silver Spring, Maryland

Poster AT-33

Purpose of the study

To intercompare Reanalysis products in order to see which are most reliable, to determine the amount of variability between the products, and point to where they can be improved.

Time interval 1980-2009, 30 years

Conclusions:

Compared to observations, the best models are

- For temperature: ERA-I, CFSR, and MERRA
- For radiative flux: CFSR, ERA-I, MERRA
- For precipitation: JRA-25, MERRA, ERA-I

Some models show considerable differences from the ensemble median in both radiative fluxes and precipitation.

The trends also vary considerably between the models, often even differing in sign.

- The temperature trends are more consistent, since temperature is assimilated.
- The vertical structure of the temperature trends is different between the models.
- The spatial patterns in the trends also show significant differences
- Annual precipitation trends show considerable variability spatially and between the models

Sponsor

NOAA Climate Program Office, Modeling Analysis Prediction and Projection program

Contact

Ron Lindsay lindsay@apl.uw.edu

Comparison of the **2-m air temperature** measured at land stations with the estimates from the models. a) station locations; b) mean difference by month; and c) anomaly correlations, where variability between stations has been removed. Data are from the Climate Research Unit, University of East Anglia.

Evaluation of Seven Different Atmospheric Reanalysis Products in the Arctic Ron Lindsay and Mark Wensnahan

Polar Science Center, University of Washington, Seattle WA

20CR

CFSR

bottom) the anomaly correlations.

+/- 17 W/m²/decade

+/- 8 W/m²/decade