Representation of the Sierra Barrier Jetin 11 years of a
_high-resolution dynamical reanalysis downscaling

Mimi Hughes'#, Paul Neiman?, Ellen Sukovich', and F. Marty Ralph?

1. Cooperative Institute for Research in the Environmental Sciences, University of Colorado, Boulder, CO 2. National Oceanic and Atmospheric Administration, Earth Systems Research Laboratory, C I R E S

Physical Sciences Division, Boulder, CO

Motivation: The Sierra Barrier Jet (SBJ) is an orographically generated low level jet SBJ: Impact on water vapor soNT . __ DbWRFARD

that often occurs as extratropical cyclones make landfall on the US west coast. These transport
same cyclones often generate the majority of California’s precipitation. The SBJ's
prevalence during stormy conditions, its influence on moisture advection, and its po-
tential to act as a virtual barrier, lead to the SBJ strongly influencing precipitation dis-
tribution. The strong topographically enhanced flow during SBJ conditions also po-
tentially impacts aerosol transport. Because of these important impacts, the SBJ’s rep-
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resentation in reanalysis products is critical, but has been previously undocumented. , , 36N
This study documents the SBJ’s representation in two reanalysis datasets and two re- Looking first at integrated water vapor (- = 2
y P y . R -
analysis downscalings compared with wind profiler observations. transport (IVT; Fig. 5), we see that both N I “éfffffffff‘i::
. . . WRF-RD and NARR have strong south- 124W 120w 120W| 20w T22W  120W
., & NNRP __DINARR______________ Gjerra Barrier Jet at Chico, CA westerly IVT that penetrates through ° .ntegratedJv%‘%erVaporTranip%rt(kgm151)30"
We first inspect the representation of | the gap in coastal topography 42 NARR, Sierra:perp. cross section MRSl o
4 the Sierra Barrier Jet in: into the northern Central € »
1) NCEP/NCAR Reanalysis Product Valley, turning northward as it ;3
(NNRP) approaches the Sierra Nevada. =
> 2) North American Regional Reanalysis WRF-RD’s IVT is nearly 50% 52
(NARR) larger offshore, likely due to =
36 3) California Reanalysis Downscaling to the larger wind speeds we saw 1
10 km(CaRD10} at 1000m MSL (Fig. 3). p= |
" 4) Weather Research and Forecasting Vertical cross sections of 124 —1_é3 192 _121 -120 | B AL 24 _—1'23 27 121 —1éo_ B
d) 3-03 DEM_ | | | Reanalysis Downscaling to 6 km water vapor ﬂUX (Fig. 6) e 4C NARR, Sierra-parallel cross sctlo d) WRF, Sierra-parallel cross sectlo
(WRF'RD). . . qualitatively similar the corre- E
R | The closest gndpomt of each r.eanaIYSls sponding cross sections of %.)3
5, or dovynscalmg prodgct at Chico, CA wind. However, because water
° (C.CO) is compared with the obser\{ed vapor mixing ratios are largest E
2 %, winds from 11 years of 915 MHz wmd. near the surface while across- < , -~
% | profiler data. SBJ evenjcs were tagggd N 1 barrier winds peak aloft, : g§=j\', I :
each f]latas.et by.an objective algorithm | _ 1 i qivec veak - s a SO ___
described in .Ne|man et al (2.01 0). Besul— ~700m above the surface over | |
- S tant composite SBJ along-Sierra wind the ocean and east of the ° Fluxoé%?nponent maoggﬁude (kg mQ%J)Z
mled “O - |_124 —— speed is shown in Fig. 2; WRF-RD’s com- Sierra crest, but above the SBJ Figure 5 (above right): Composite integrated water vapor transport for
" N erain height (km)  © posite profile is the closest to that ob- core winds over the Central overlapping SBJ events in (a) NARR, and (b) WRF-RD, at 1000m MSL.

Figure 1: Elevation map of California as represented by (a) NNRP, (b) served. VaIIey suggesting the SBJ acts Lines AB and CD in (b) show location of cross sections shown in Fig. 4.
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important implications for aerosol transport in the region.
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