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•  40 participants  
covering a wide range of expertise, i.e. plant 
physiology, marine biology, atmospheric 
inversions, land and ocean biogeochemistry, 
paleo-climate, Earth system modelling, etc.  
•  plan of action 
including organization of a brain storming 
meeting on predictions of the carbon cycle 

KO workshop in November 2017 
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The Grand Challenge to understand how biogeochemical cycles and feedbacks 
control CO2 concentrations and impact on the climate system 

AR5 WG1 SPM:  
“Based on ESMs, there is 
high confidence that the 
feedback between climate 
and the carbon cycle is 
positive in the 21st century.” 

Uncertainty in carbon cycle projections (>300 ppm) is comparable to differences 
across socio-economic scenarios.   
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CMIP5 
•  >40 climate models (AOGCM) 
•  10 ESMs (i.e. with BGC components) 



The Grand Challenge to understand how biogeochemical cycles and feedbacks 
control CO2 concentrations and impact on the climate system 

Large uncertainty in CO2 emissions compatible with a given climate target. 
Budget for the 2°C target is about 700GtC to 1300GtC.  
Given 550 GtC emitted so far, that’s 15 to 75 years of current emissions.   

Uncertainty 
•  Carbon feedbacks 

(CO2 emissions       
è CO2 concentration) 

•  Climate feedbacks 
(CO2 concentrations 
è climate response) 

AR5 WG1 SPM:  
“Cumulative total emissions of 
CO2 and global mean surface 
temperature response are 
approximately linearly related. 
Any given level of warming is 
associated with a range of 
cumulative CO2 emissions.” 

IPCC AR5 



Research initiatives: 
I.  Process understanding on land (questions 1, 2, 3)  

II.  Process understanding in the ocean (questions 1, 2, 3)  

III.  Learning from the existing record (question 1) 

IV.  Towards improved projections (questions 2, 3)  

The Grand Challenge 

Guiding questions: 
1.  What are the drivers of land and ocean carbon sinks?  
2.  What is the potential for amplification of climate change over the 21st 

century via climate-carbon cycle feedbacks?  
3.  How do greenhouse gases fluxes from highly vulnerable carbon 

reservoirs respond to changing climate (including climate extremes and 
abrupt changes)?  

to understand how biogeochemical cycles and feedbacks 
control CO2 concentrations and impact on the climate system 



1. What are the drivers of land and ocean carbon sinks?  

Ocean: key mechanisms are identified, but with large uncertainties regarding 
their strength, regional and multi-year variability 

Landschützer et al., Science, 2015 

Observations 

•  large spread in both observational and modeled 
estimates of the ocean carbon sink  

•  poor understanding of origins of variability 
•  unclear relative contribution of physical vs. biological 

processes 

Southern Ocean is responsible for about half of the ocean carbon sink  

ensemble mean 

observations 
and their uncertainty 

100 members MPI-ESM 

2 members with contrasting 
increasing/decreasing trends 

Hongmei Li in prep. 

Southern Ocean C-sink variations 
MPI-ESM (note reversed y-axis) 

Southern Ocean C-sink variations 



1. What are the drivers of land and ocean carbon sinks?  

Land: the main barriers relate to understanding of the actual processes 
driving the sinks  

C. Le Quéré et al.: Global Carbon Budget 2015 373
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Figure 6. (a) Comparison of the atmosphere–land CO2 flux show-
ing budget values of ELUC (black). CO2 emissions from land-use
change showing individual DGVM results (green) and the multi-
model mean (olive), as well as fire-based results (orange); land-use-
change data prior to 1997 (dashed black) highlight the start of satel-
lite data from that year. (b) Land CO2 sink (SLAND; black) showing
individual DGVM results (green) and multi-model mean (olive).
(c) Total land CO2 fluxes (b–a) from DGVM results (green) and
the multi-model mean (olive); atmospheric inversions of Cheval-
lier et al. (2005; MACC, v14.2) (purple), Rödenbeck et al. (2003;
Jena CarboScope, s81_v3.7) (violet), and Peters et al. (2010; Car-
bon Tracker, vCTE2015) (salmon) (see Table 6); and the carbon
balance from Eq. (1) (black). In (c) the inversions were adjusted for
the pre-industrial land sink of CO2 from river input, by adding a
sink of 0.45GtC yr�1 (Jacobson et al., 2007). This adjustment does
not take into account the anthropogenic contribution to river fluxes
(see Sect. 2.7.2).

ability in CO2 fluxes to the tropics compared to the north
(north of 30� N; Fig. 8). This variability is dominated by land
fluxes. Inversions are consistent with each other and with the
mean of process models.
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Figure 7. Comparison of the anthropogenic atmosphere–ocean
CO2 flux shows the budget values of SOCEAN (black), individ-
ual ocean models before normalisation (blue), and the two ocean-
data-based products (Rödenbeck et al., 2014, in salmon and Land-
schützer et al., 2015, in purple; see Table 6). Both data-based prod-
ucts were adjusted for the pre-industrial ocean source of CO2 from
river input to the ocean, which is not present in the models, by
adding a sink of 0.45GtC yr�1 (Jacobson et al., 2007) so as to
make them comparable to SOCEAN. This adjustment does not take
into account the anthropogenic contribution to river fluxes (see
Sect. 2.7.2).

In the north (north of 30� N), the inversions and process
models are not in full agreement on the magnitude of the
CO2 sink, with the ensemble mean of the process models
suggesting a total Northern Hemisphere sink for 2005–2014
of 2.3± 0.4GtC yr�1, while the three inversions estimate a
sink of 2.5, 3.4, and 3.6GtC yr�1. The mean difference can
only partly be explained by the influence of river fluxes,
as this flux in the Northern Hemisphere would be less than
0.45GtC yr�1, particularly when the anthropogenic contri-
bution to river fluxes are accounted for. The CarbonTracker
inversion is within 1 standard deviation of the process mod-
els for the mean sink during their overlap period. MACC and
Jena-s81_v3.7 give a higher sink in the north than the pro-
cess models, and a correspondingly higher source in the trop-
ics. Differences between CarbonTracker and MACC, Jena-
s81_v3.7 may be related to differences in inter-hemispheric
mixing time of their transport models, and other inversion
settings. Differences also result from different fossil fuel
emissions assumed in the inversions, as the inversions pri-
marily constrain the sum of fossil fuel and land fluxes. Differ-
ences between the mean fluxes of MACC, Jena-s81_v3.7 and
the ensemble of process models cannot be simply explained.
They could reflect either a bias in these two inversions or
missing processes or biases in the process models, such as the
lack of adequate parameterisations for forest management in
the north and for forest degradation emissions in tropics for
the DGVMs.

www.earth-syst-sci-data.net/7/349/2015/ Earth Syst. Sci. Data, 7, 349–396, 2015

LeQuéré et al., ESSD, 2015 

Zaehle et al., New Phyt., 2014 

Fair global agreement between land carbon models 
and estimate from global carbon budget 

But large uncertainty at the process level, 
e.g. plant response to CO2 increase 

considered the past land use, as well as the historic evolution of
atmospheric CO2 concentration and N deposition, and site-spe-
cific meteorological driver data from during the FACE experi-
ments were used throughout the spin-up. The forest vegetation
of the plots was initialized such that the forests had the correct
age and structure, as far as considered by the model, at the begin-
ning of the eCO2 treatment. Details of the spin-up phase varied
among models because of differences in model structure (A. P.
Walker et al., unpublished). Inherently different assumptions of
the models regarding soil C residence times and ecosystem N loss
rates, as well as pre-FACE grassland productivity and N fixation,
led to a notable spread in the initial amounts of modelled C and
N pools, net N mineralization rates and thus NPP, despite the
common initialization protocol.

Model outputs were provided at hourly or daily time steps, as
appropriate. These outputs contained estimates of the various C,
N and water fluxes and pools.

Results

Overall response to eCO2

Observed ambient NPP and inferred fNup at Duke FACE were
both slightly larger than at ORNL FACE (Figs 2, 3a,b), implying
that the whole-plant NUE was similar between the sites (Fig. 4)
at 121! 2 g C g"1 N in the ambient plots (1997–2005 mean)
for Duke FACE and 129! 13 g C g"1 N at ORNL. This simi-
larity between sites is in contrast with an earlier study (Finzi
et al., 2007), because the corrections in biomass estimates by
McCarthy et al. (2010) resulted in a downward adjustment in the
estimate of NUE at Duke Forest.

The interquartile range of the model ensemble included the
observed ambient NPP at both sites. However, there was

significant spread across the models, resulting to a large extent
from different model spin-ups, which led to different levels of N
constraints on plant production. Only a few of the models
(GDAY, OCN) captured the decline in NPP in the ORNL
ambient plots related to declining soil N availability over the
course of the experiment (Norby et al., 2010; Garten et al.,
2011). Although the models, on average, matched the inferred,
observation-based fNup at Duke Forest, they overestimated
fNup at ORNL (Fig. 3). On average, the models slightly underes-
timated NUE at Duke and more strongly at ORNL FACE
(Fig. 4). The primary cause for the underestimation was a high
bias in the simulation of the fractional (C) allocation to fine roots
at both sites (M. G. De Kauwe et al., unpublished). At ORNL
FACE, this difference was accentuated by higher modelled than
observed N concentration of the fine roots (average 1.4% mod-
elled vs 0.7% observed).

Elevated CO2 increased NPP in the initial (first) year of the
experiments by 25! 9% and 25! 1% at Duke and ORNL
FACE, respectively, according to the measurements (Figs 2c,d,
5a,b). Most models simulated an initial (first year) increase in
NPP as a result of eCO2 that was close to the observations. Nota-
ble exceptions were CABLE and CLM4, which systematically
underestimated the initial response at both sites, as well as
EALCO and ISAM, which overestimated the response for Duke
FACE (Fig. 5a,b). Nonetheless, no model simulated the underly-
ing changes in fNup and NUE correctly for both sites. At Duke
Forest, according to the measurements, the increase in NPP was
associated with a strong increase in fNup. The models generally
underestimated the observed increase in fNup and overestimated
the increase in NUE. At ORNL, according to the measurements,
the initial increase in NPP was associated with nearly equal
increases of fNup and NUE (Fig. 5). Some models simulated a
change in NUE in agreement with the observations (DAYCENT,
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Fig. 2 Ambient net primary production (NPP;
a, b) and its response to elevated CO2 (c, d)
at the Duke (a, c) and Oak Ridge National
Laboratory (ORNL) (b, d) Free-Air CO2

Enrichment (FACE) experiments. The
observations are across-plot averages, and
the error bars denote ! 1SE.

! 2014 The Authors
New Phytologist ! 2014 New Phytologist Trust.

New Phytologist (2014)
www.newphytologist.com

New
Phytologist Research 5
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I.  Process understanding on land 
•  Quantification of the strength of the CO2 fertilization, photosynthesis and 

limitations from nitrogen cycle 
•  Quantification of gross carbon fluxes sensitivity to warming and variability 

(and changes in hydrology) 
•  Understanding of ecosystems vulnerability and risk of carbon loss 

II.  Process understanding in the ocean  

Research Initiatives 

•  Quantification of the strength of the Southern Ocean CO2 uptake  
•  The relative role of physical vs. biological processes in determining the 

ocean carbon sink 
•  Understanding the origins of variability (from seasonal to decadal) of the 

ocean carbon sink  
•  Relationship between anthropogenic carbon and heat uptake 



Opportunities for rapid progress of this Grand Challenge 

•  CMIP6 will have more than 20 ESMs (CMIP5 had 10 ESMs) 

•  C4MIP is among the most popular CMIP6 endorsed MIP (along with 
ScenarioMIP and OMIP) 

•  IPCC AR6 will “very likely” heavily rely on those simulations for 
assessment of climate projections, compatible emissions, TCRE, climate 
impact on land and marine ecosystems, irreversibility, etc 

 
•  Advances in observational techniques (e.g. argo floats, satellite data, 

improved paleo reconstructions) 

•  Urgent need to have better understanding of key BGC processes and 
their feedbacks on the climate system. 

 

ESMs are becoming “standard” tools for the climate community 



Opportunities for rapid progress of this Grand Challenge 
“Why now ?” 

§  C4MIP 
•  1% runs: feedback analysis 
•  E-driven scenarios:  climate change 

amplification  
§  Deck 

•  Historical: evaluation 
•  1% runs: feedback analysis 

§  ScenarioMIP 
•  C-driven scenarios: C-cycle 

vulnerability to future climate 
§  OMIP, LS3MIP, DCPP 

•  process understanding and evaluation 

CMIP6 
•  SOCAT and GLODAP 
•  Argo floats 
•  New satellite data (e.g. CO2) 
•  Flux measurement networks 
•  process oriented obs. 

Observational networks 

WCRP projects 
•  CLIVAR, SPARC 

Future Earth projects 
•  GCP 
•  AIMES, SOLAS, ILEAPS, IMBER 
•  Knowledge Action Networks 

Other GCs 
•  GC-Cryosphere 
•  GC-Decadal? 
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Fig. 2. Comparison of the predictive skill in reproducing observed variations in annual mean NPP and SST. (A–C) Correlation skill score in predicting
estimated yearly mean anomalies of primary productivity of Eppley–VGPM and VGPM average. (D–F ) SST (Reynolds and HadISST average). Skill at 1-y lead
time (LT) of the hindcasts over the 10 y of SeaWiFS period for (A) the NPP and (D) the SST. As A and D, but over the lead time years 2–5 of the hindcasts for
(B) the NPP and (E ) the SST. Significance at 90% level confidence is contoured in black lines. Fishing areas from January 1991 to December 2011 within the
low-latitude Pacific ocean (30°S–30°N) are indicated as green-hatched regions. Skill score diagram of the 10-y-long hindcasts evenly distributed over the
SeaWiFS period (1998–2008) for (C ) NPP and (F ) the averaged SST within the low-latitude Pacific ocean. Both AC-SS and RMSE-SS are computed from
yearly detrended anomalies over the SeaWiFS period (1998–2008) and over the MODIS period (2002–2012; SI Appendix, Fig. S11). The hatched regions
indicate predictability limits at 90% and 95% for the AC-SS and the σObs for the RMSE-SS. The filled squares and triangles indicate measures of effective
and potential predictability, respectively. The numbers mentioned in both squares and triangles represent the lead time year (LT) of the hindcast
prediction.
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Predictive skill of the tropical Pacific 
NPP of up to 3 years 

Potential predictive skill of the North 
Atlantic CO2 uptake of up to 4-7 years 

Towards decadal predictions of the carbon cycle 



Potential for GC-carbon/GC-predictions interactions 

 

•  Paris Agreement and Global Stocktake: Where will we be in 2030? 
•  Carbon cycle has pronounced interannual (mainly land)  to decadal 

(mainly ocean) variability. Is the variability of the carbon cycle 
predictable? 

•  How well can we reproduce past variability (hindcast) of the coupled 
climate and carbon cycle system? 

•  Can we predict climate and carbon cycle in the next couple of years/
decades? 

•  Given national INDCs, what is the likely/range carbon sinks, 
atmospheric CO2 increase and climate response to be expected by 
2030, when accounting for natural variability? 

•  Do we have CMIP6 simulations that can help addressing these 
questions? 

 


