Changes in dynamical and physiscal
processes in explaining recent
extreme events



Structure of presentation

1. Formalism and methods

2. Changes in daily extremes from
observations and analogues

3. Changes in winter monthly precip —an
exemple using large atmospheric ensembles

4. Changes in summer temperature anomalies
and the role of SM vs. Flow

5. Remaining issues and concluding remarks



The starting point: can flow changes
explain thermal changes?
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variability. Here we use atmospheric circulation data from the
Northern Hemisphere to show that recent climate change can be
interpreted in terms of changes in the frequency of occurrence of
natural atmospheric circulation regimes. We conclude that recent
Northern Hemisphere warming may be more directly related to
the thermal structure of these circulation regimes than to any
anthropogenic forcing pattern itself. Conversely, the fact that



Since then

Several studies addressing possible long term flow
changes and impacts on extremes (eg Lennard et al
2015; Horton et al., 2015, ...)

NAO has gone down then up again lately

Artic sea ice effects / blocking debate after a few cold
winters

...But the atmosphere is still warming and we still have
difficulties characterizing:

— The changes in flow patterns (too many d-o-fs)
— The link of such changes to EE changes
— Europe particularly difficult due to a mixture of drivers



Changes in flow and in extremes
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Weather patterns changes and
associated changes in extreme
temperatures

No significant result for winter

In summer, 27% of extreme
changes due to more EE ridges

Z500 used, could induce biases (T
included by thermal expansion)

Horton et al., 2015



Formalism

P(T > T,) = Z P(T > T,|F).P(F)

flows F \_V_’ \_"_’

Physics Dynamics

Change:

Pc(T > T,) = Z Pc(T > Ty|F).Pc(F)
flows F



Decomposition of changes

AP(T > T,) =

ZﬂowsFAP(T > To|F) .PC(F)+ZﬂOW5FP(T > To|F) .APc(F)

—

Change in marginal T Change in flow F distribution
distribution (physics) (dynamics)

Both can be due human influence
Natural variability should mostly affect the Change in F



Can we detect a flow-induced
change in daily extreme events?



The flow analogue methodology

Estimates the marginal distribution P(T > T,|F)

Take NCEP SLP (daily) 1948-2015
Take T, Pr from ECA&D 1948-2015

Reconstruct a daily temperature series from the 10
best flow analogue dates, the « marginal
distribution »

Calculate seasonal statistics (average, freq. Of
extremes) from reconstructed data and compare
with original data

Analogue dates taken from the data base of el



Mean temperature trends and flow contribution
(Vautard & Yiou, 2009, GRL; updated until 2015)
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Winter extremes trends & Flow
Attributable Fraction
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Flow attributable fraction of extreme
temperatures frequency trend
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Heavy rain (RR>20 mm)
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Why do we care about contributions?
Future proiections (here CMIP3)
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Single event — Monthly amounts

The example of the exteme amount of
JAN 2014 in Southern UK

Large ensemble from Oxford experiments
17000 JAN Months for factual world
~110000 JAN months for counterfactual

world



Precipitation: models needed with
long simulations
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Dynamical contribution: use of
monthly analogues
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Return Value [mm / Month]

Role of circulation changes
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Role of initial soil moisture vs. flow
in explaining summer anomalies and
extremes

Nudged modeling experiments

A. Stegehuis, B. Quesada, M. Vogel,
S. Seneviratne, M. Hirschi, P. Yiou



Soil moisture increase the sensitivity ot
temperatures to blocking anticyclones

4 PSL Weather Regixes for NCEP ( JJUA 1958-2013)
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Flow vs. ISM: Experimental design

e Perform a CTRL regional experiment (WRF) run with
controled circulation (wind spectral nudging above
boundary layer)

e Simulate each summer of Year Y with

(1) The CTRL soil moisture of Year Y and winds of each of all
32 years, also SSTs

(2) The winds of Year Y and soil moisture of each of 32 years

e C(Calculate the differences Tc-<T1> and Tc-<T2> (resp.
« flow contribution » and « SM contribution)

e Initial SM on 30 June
e Temperatures averaged over July & August



Example : ISM contribution of JA 2003

Difference in daily mean summer temperature
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Correlations (r) between T anomay
and each contribution
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Feedback on circulation?

Correlation between the
temperature anomaly and its
difference with the sum of
the two responses

Negative

- the sum of responses
overestimate the anomaly
- Negative feedback




Increasing contribution of initial soil
moisture?

Small central Europe
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Main conclusions (for Europe)

e Dynamical contribution of changes in T and Pr
extremes exists and varies between 15% and 40%
depending on season, higher in winter

* |nconsistent conclusions for summer HWs between
studies and experiments regarding role of circulation
and other drivers

e Dynamical contribution should become much less in
the future as compared to thermodynamics; signal may
be emerging in soil moisture contribution changes



Some remaining issues
Key challenges

e What are the flow patterns that change most in
frequency and what are those that change extremes?

e Sort out heat waves & drought issues: better
characterize land/sea-atmosphere exchanges, soil
moisture, SST, snow, time and spatial scales of
interaction, long-lived anticyclones

e Link between circulations and changes with most

damaging extremes: heavy hourly precip, hail,
lightnings etc



Cross-community opportunities

 ExtremeX: evaluate the contribution of various
drivers of recent extremes; distinguish dynamics
and physics using spectral nudging experiments

 Hourly precipitation extremes (leading to flash
floods):

— Share observations

— Cloud resolving climate model experiments, CORDEX
framework for coordinated experiments



Thanks for your attention!!
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