An Antarctic assessment of surface and mid-tropospheric pressure and temperature in the latest generation of global atmospheric re-analysis datasets

Introduction

Here six different re-analysis datasets are assessed (CFSR, ERA-40, ERA-Interim, JRA-25, MERRA and NNR1) to determine a best estimate of variability and change since 1979 when the widespread monitoring of the atmosphere from satellites was introduced.

Reanalysis compared to assimilated SLP and SAT observations

Fig. 3. Differences in annual mean sea level pressure between different re-analyses and in-situ observations for the period 1989-1999. The title of each panel shows the root mean square error (RMSE) average from subsets of stations in the following locations: coastal stations in the western hemisphere; the Antarctic interior (stations south of 78S); and coastal stations in the eastern hemisphere.

Name (full name)	Horizontal grid (approx. grid size at 50° latitude)
CFSR (NCEP Climate Forecast System Reanalysis)	T382 (~ 34 km)
ERA-40 (European Centre for Medium Range Weather Forecasting 40 Year Re-analysis)	T159 (N80; ~125 km)
ERA-Interim (European Centre for Medium Range Weather Forecasting Interim Re-analysis)	T255 (N128; ~79 km)
JRA-25 (Japanese 25-year Reanalysis)	T106 (~120 km)
MERRA (NASA Modern Era Retrospective- Analysis for Research and Applications)	0.5°×0.67° (~50 km)
NNR1 (National Centers for Environmental Prediction (NCEP) / NCAR (National Center for Atmospheric Research) Reanalysis 1)	T62 (~210 km)

British Antarctic Survey

NATURAL ENVIRONMENT RESEARCH COUNCIL

Thomas J. Bracegirdle and Gareth J. Marshall, British Antarctic Survey, Cambridge, United Kingdom (tjbra@bas.ac.uk)

Reanalyses compared to independent SLP observations

The performance of recently released re-analysis datasets (CFSR, MERRA and ERA-Interim) over Antarctica has not been rigorously assessed. For an assessment of accuracy in the region of interest a comparison with ice drifter (CALIB) MSLP data over the Bellingshausen Sea (Feb-May 2001) was conducted. This represents an independent test since the data were not released onto the GTS.

1010

SAT and orography height

Mid-troposphere temperature trends.

• ERA-Interim is the most accurate of the six re-analyses. CFSR, ERA-40 and MERRA showed mean biases within the CALIB instrumental error. • Decadal variations of westerly winds congruent with the observed increases in the southern annular mode (SAM) are a consistent feature across the reanalysis datasets.

• In terms of year-to-year variability, the annual mean westerly winds over the Amundsen Sea were found to be weakly correlated with ENSO.

Fig. 6. Time series of ΔP_{AS} derived from CFSR and MERRA normalised by the standard deviation of year-to-year variability plotted with: (a) the annual NINO3.4 index, (b) the summer SAM index (Marshall (2003)), and (c) the winter SAM index.