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Introduction The Heat Transport Time Series
At 26°N, the Atlantic ocean circulation carries about 1.3 PW (1 PW = 10" W) of heat northward. This is approximately 70% of
the net poleward heat flux carried by the global oceans and 25% of the total heat flux by the ocean and the atmosphere at this
latitude (Ganachaud and Wunsch, 2003). The most recent assessment from coupled climate models (IPCC 4th Assessment
Report; Meehl et al, 2007) is that greenhouse warming will lead to a decrease in the strength of the Atlantic MOC by 25% in the
next century (Schmittner et al, 2005). This will presumably lead to a similar decrease in the Atlantic meridional heat transport,
unless compensated by increased gyre or eddy circulations. Here, continuous estimates of the oceanic meridional heat
transport in the Atlantic are derived from the RAPID-MOCHA (Rapid Climate Change — Meridional Overturning Circulation and
Heatflux Array) observing system deployed along 26.5°N since 2004. The time-mean meridional heat transport (MHT) during
2004-2010 was 1.28 = 0.13 PW, consistent with previous direct estimates, but with a substantially reduced uncertainty
compared to one-time estimates from hydrographic sections. The MHT estimates available from the array provide an important
benchmark for indirect estimates derived from surface climatologies and residual methods, and for comparison with climate
models. These results update the previous results reported by Johns et al. (2011, JCLIM) based on the first four years of
observations.
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of 1.28 PW. Year-to-year variability is relatively
small during the first 5 years of the time series
(2004-2008), but a large anomaly occurred in
2009-2010, resulting in much lower mean heat
transports of ~1.1 PW during those years. This
anomaly was driven in large part by reduced
Ekman transports associated with a strong
negative NAO anomaly in winter 2009-2010,
which recurred again in winter 2010-2011 (see
poster TH71B).

Year to year variations in the heat transport
can be resolved to within an accuracy about
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Trenberth and Fasullo (2008)], air-sea flux climatologies [LYO09,
Large and Yeager (2009)], and coupled models (CM2.1 from
z GFDL; CCSM4 from NCAR) tend to provide lower estimates, often
5 2 below the lower error bound of the RAPID estimate.
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