Removing ENSO-related Variations from the Climate Record

Gilbert P. Compo and Prashant D. Sardeshmukh

Climate Diagnostics Center, CIEWS, University of Colorado, Boulder, CO
Physical Sciences Division, Earth System Research Laboratory, NOAA, Boulder, CO

1. How should one identify ENSO-related variations?

Tropical SST state vector: \(x(t) = x_E(t) + x_L(t) \)

Enso part
Non-Enso part

Rest of climate state vector: \(y(t) = y_E(t) + y_L(t) \)

\[x(t) = \sum \alpha_i E_i(t) = \sum \alpha_i E_i(t) \quad \text{where } \alpha_i \text{ are the EOFs} \]

\[y(t) = \sum \beta_i E_i(t) = \sum \beta_i E_i(t) \quad \text{where } \beta_i \text{ are the PC of ENSO-unrelated variations} \]

Note! \(x \) is not necessarily orthogonal to \(y \), nor is \(y \) to \(y \).

Non-orthogonality implies that one cannot estimate any of the ENSO-related components from \(x(t) \).

Almost all previous studies have assumed orthogonality, even though there is no physical reason to do so.

Some difficulties with traditional approaches:
1. Defining \(x \) as the band-pass filtered \(x \) in the 2-6 yr band assumes that all of the SST variability in this band, and none outside it, is ENSO-related.
2. Defining \(x \) in terms of an SST index in grid space (such as a Niño3.4 index) implies that there can never be a non-Enso part \(x \) in that index by definition, for instance, one can never have a “global warming” signal in Niño3.4.
3. Defining \(x \) in terms of an SST index in EOF space (such as the 1st PC) has the same problem. In addition, it assumes that \(x \) is orthogonal to \(y \).

Define ENSO from the dynamical operator \(L \) governing Tropical SST evolution (Penland and Sardeshmukh 1995; Penland and Matrosova 2008):

\[x(t) = \exp(Lt) x(0) + \text{noise}(t) \]

estimating \(L \) from the lag covariances \(C(t) = \text{cov}(x(t) + x(t)') \) of monthly SST in the HadISST dataset (1949-2004) at lag 0 and lag 3 months as

\[L = \frac{1}{\tau_E} \ln \left(\text{Cov}(x(t) + x(t)) \right) \]

2. How should one remove ENSO-related variations from the climate record?

First, define ENSO as the 4 dynamical eigenmodes of \(L \) that contribute most to the observed growth and decay of events.

What do these modes of \(L \) look like?

Second, project these ENSO modes onto the observed tropical SST record to form \(\zeta_E(t) \). Then, extend ENSO to extratropical SSTs \(\zeta_E(t) \) using an “Atmospheric Bridge” \(A \). Finally, remove both from original monthly SST record.

\[\text{Tropical SST: } (x(t) - y(t)) = \exp(L(t) + r) x(0) \quad \text{over short-interval } t \quad \text{(second season)} \]

\[\text{Extratropical SST: } (x(t) - y(t)) = \exp(A(t) + r) x(0) \]

3. What do trends look like after removing ENSO?

Time series of the global ocean average surface temperature anomaly (black curve) and its ENSO-unrelated component (red curve). A 10-yr running mean has been applied to both series. Anomalies are relative to a 1949-2004 climatology. The ENSO-unrelated trend is ~80% of the original trend.

What do multidecadal variations look like after removing ENSO?

4. Conclusions

1. Identifying and removing ENSO-related variations by using simple regressions on any single ENSO index can be problematic.

2. \textit{ENSO is not a number} It is an evolving dynamical process.

3. We identify ENSO-related SST variations with the projection on the 4 most important dynamical SST eigenmodes involved in the growth and decay of ENSO events over several seasons.

4. Removing ENSO-related variations has a large effect on SST trends, up to 40% of the total trend in globally-averaged ocean temperatures. There is a strong cooling trend in the eastern equatorial Pacific Ocean.

5. The residual SST data (that is, data from which the ENSO component has been removed) reflect a combination of anthropogenic, naturally forced, and coherent internal multidecadal variability.

6. The 1st EOF of the residual SST data has a general “global warming” structure, but also a pronounced cooling in the eastern equatorial Pacific.