

Introduction

With societal requirement for energy and related economic activity at present so tightly linked to the burning of fossil fuels, it is a requirement Model that the feasibility of any particular future pathway is evaluated. This is especially true for those pathways that imply major decarbonisation and so an evaluation is needed as to whether alternative non-fossil fuel energy simplified atmosphere-ocean sources will be available.

The IPCC Expert Meeting made "benchmark emission scenario" called ecosystem component, Oka et al., Representative Concentration Pathways (RCPs) which is used to initiate the climate models to develop more practical scenarios. There are four RCPs named after radiative forcing in 2100; RCP3-PD, 4.5, 6.0, and 8.5 and they are used in CMIP5 and then IPCC AR5. Here we consider the RCP4.5 scenario (and its extension to 2300), which is perhaps considered a moderate pathway, relatively ecofriendly but, perhaps, not unattainably extreme.

There are presently just a small number of results published estimating allowable emission for the various RCPs. As expected, these estimates differ from the "harmonized" allowable emission values (Meinshausen et al., 2011, Clim. Change). Different models have a different estimate of climate sensitivity, and also alternative depictions of components of the global carbon cycle, and thus, as in previous multi-model experiments, are expected to produce a wide range of results. Here we preempt the new multi-model results by considering a range of uncertainty in the inputs to our uncertainty framework consistent with the scientific consensus as presented by the last IPCC report.

Parameter		Component	Default		Perturbation range		
Vertical diffusivity		Ocean	0.1-3.0cm2/sec		0.3-3.0*default		
Horizontal diffusivity		Ocean	1x10^7 cm2/sec		0.5-5.0*default		
Climate sensitivity		Atmosphere	4.7 (Tachiiri et al. 2010)		1-6K		
Gent-McWilliams thickness paramete	er	Ocean	7x10^6cm2/sec		1-20*10	1-20*10^6 cm2/sec	
Magnitude of freshwater flux adjustn	nent	Ocean	1.0 (ratio to the Oort (1983) values		s 0.:	5-2.0	
Wind speed used in marine CO2 uptake		Marine carbon	3.3m/s (Tachiiri et al. 2010)		2.0-8.0m/s		
Maximum photosynthetic rate	Maximum photosynthetic rate		8.0-13.5 µ molCO2/(m2s)		0.8-3.0*default		
Specific leaf area		Land carbon	110-170 cm2/(g drymatter)		0.5-2.5*default		
Minimum temperature for photosynthesis		Land carbon	-5.0-11.0 °C	-4.5-+3.0 °C of default			
Coefficient for temperature dependency of plant's respiration		Land carbon	2.0 (dimensionless)		1.:	5-3.0	
A parameter of temperature dependency of soil respiration		Land carbon	46.02 K		35-	-55 K	
Total direct aerosol forcing		Forcing	(RCP4.5)		0.0-2.0	*RCP4.5	
				∐nit	This study	C4MIP	
ble 2 Comparision with C4M	IP		α	K/ppm	0.0054 ± 0.0013	0.0061 ± 0.00	
nearized transient climate response			βı	PgC/ppm	1.1±0.3	1.3±0.6	
inearised transferit crimate response		, , .	βo	PgC/ppm	1.2±0.3	1.1±0.2	
earbon sensitivities to atmospheric CO_2 concent		itration	γL	PgC/K	-97±75	-79±44	
arbon sensitivities to atmospheric temperature		change	γ <u>ρ</u>	PgC/K	-33±11	-31±16	
	No. Parameter		Average±Standard deviation 906- 0.74±0.18 (K/100y)		Assumed distribution T		
	Trend of global mean air 2005)	surface temperature (0.74±0.18 (K/100y)		1		
	 Trend of global mean air 2005) Trend of ocean heat cont 	tent (1969-2003)	0.74±0.18 (K/100y) 0.32±0.05 (1022J/y)		T T		
	 Trend of global mean air 2005) Trend of ocean heat cont Historical emission (1959) Net Driver Development 	surface temperature (tent (1969-2003) (2005)	0.74±0.18 (K/100y) 0.32±0.05 (1022J/y) 2.00 (PgC/y)**		T Gaussian		
	 Trend of global mean air 2005) Trend of ocean heat cont Historical emission (1959) Net Primary Production (Atlantic meridional overtice) 	tent (1969-2003) -2005) (1961-90, spatial (2D)) urning circulation (after	0.74±0.18 (K/100y) 0.32±0.05 (1022J/y) 2.00 (PgC/y)** 1.08**		T Gaussian Gaussian		
	 Trend of global mean air 2005) Trend of ocean heat cont Historical emission (1959) Net Primary Production (Atlantic meridional overtures spinup for 1850) 	surface temperature (tent (1969-2003) -2005) (1961-90, spatial (2D)) urning circulation (after	0.74±0.18 (K/100y) 0.32±0.05 (1022J/y) 2.00 (PgC/y)** 1.08** 10 Sv		T Gaussian Gaussian Threshold	l	
	1Trend of global mean air 2005)2Trend of ocean heat cont3Historical emission (1959)4Net Primary Production (Atlantic meridional overture spinup for 1850)6Present air surface temp spatial (2D))	surface temperature (tent (1969-2003) -2005) (1961-90, spatial (2D)) urning circulation (after erature (mean for 1968	0.74±0.18 (K/100y) 0.32±0.05 (1022J/y) 2.00 (PgC/y)** 1.08** 10 Sv 3-96, 474 (K)**		T Gaussian Gaussian Threshold Gaussian	l	
	 Trend of global mean air 2005) Trend of ocean heat cont Historical emission (1959) Net Primary Production (1959) Atlantic meridional overthe spinup for 1850) Present air surface temportation (2D)) Present sea temperature (3D)) 	surface temperature (tent (1969-2003) -2005) (1961-90, spatial (2D)) urning circulation (after erature (mean for 1968 (mean for 1990-97, sp	0.74±0.18 (K/100y) 0.32±0.05 (1022J/y) 2.00 (PgC/y)** 1.08** 10 Sv 3-96, 474 (K)** atial 124/35/3.6/1.1***(K)		T Gaussian Gaussian Threshold Gaussian Product o Gaussiant for 4 laye Product o	f based weights rs	
	 Trend of global mean air 2005) Trend of ocean heat cont Historical emission (1959) Net Primary Production (Atlantic meridional overtus pinup for 1850) Present air surface temporatial (2D)) Present sea temperature (3D)) Present sea salinity (mean 	surface temperature (tent (1969-2003) -2005) (1961-90, spatial (2D)) urning circulation (after erature (mean for 1968 (mean for 1990-97, sp n for 1990-97, spatial (0.74±0.18 (K/100y) 0.32±0.05 (1022J/y) 2.00 (PgC/y)** 1.08** 10 Sv 3-96, 474 (K)** atial 124/35/3.6/1.1***(K) 3D)) 2.13/0.34/0.08/0.03***(psu)	T Gaussian Gaussian Threshold Gaussian Product o Gaussian for 4 laye Product o Gaussian for 4 laye	f based weights rs f based weights rs	
	1Trend of global mean air 2005)2Trend of ocean heat cont3Historical emission (1959)4Net Primary Production (1959)4Net Primary Production (1959)5Atlantic meridional overthe spinup for 1850)6Present air surface temport spatial (2D))7Present sea temperature (3D))8Present sea salinity (mean 99All variables	surface temperature (tent (1969-2003) -2005) (1961-90, spatial (2D)) urning circulation (after erature (mean for 1968 (mean for 1990-97, sp n for 1990-97, spatial (0.74±0.18 (K/100y) 0.32±0.05 (1022J/y) 2.00 (PgC/y)** 1.08** 10 Sv 3-96, 474 (K)** atial 124/35/3.6/1.1***(K) 3D)) 2.13/0.34/0.08/0.03***((psu) 	T Gaussian Gaussian Threshold Gaussian Product o Gaussian for 4 laye Product o Gaussian for 4 laye Product o	f based weights rs f based weights rs <u>f 1-8</u>	

Parametric uncertainty in allowable carbon emission for **RCP4.5** concentration scenario Kaoru Tachiiri, Julia C Hargreaves, James D Annan, Michio Kawamiya (Japan Agency for Marine-Earth Science and Technology)

Method

We use JUMP-LCM system loosely coupling MIROC-lite (a coupled model including a marine 2001. Clim. Dyn.) with the land surface model Sim-CYCLE (Ito and Oikawa, 2002, Ecol. Model.) which is driven by an archive of meteorological outputs from a full GCM: MIROC3.2 medium resolution version.

Parameter ranges

To achieve comparability between parameter ranges for JUMP-LCM and the C4MIP ensemble (Fliedlingstein et al., 2006, J. Clim.), except for climate sensitivity and aerosol forcing fixed as presented in Table 1, the tuning was carried out heuristically using a small ensemble with 20 members as follows. (1) Based on the results of the previous experiments ranges were defined. (2) Considering the resulting relationship between the input parameter values and the modelled values for α , β and γ we shifted and/or expanded the perturbation ranges. (3) Iterate the process (2) to get acceptable result and close mapping between the effective parameter bounds.

Experiment

RCP4.5 concentration sceanrio is used to the model with 512 paremete sets flatly cover the parameter space in Table 1. The non-CO₂ forcing is considered as radiative forcing.

Constraint

To consider a realstic PDF in climate sensitivity, we selected 358 members by using B(1.8, 2.2). Then we use the data presented in Table3. The data sources are: Physics: HadCRUT3 data (http://www.cru.uea.ac. uk/cru/data/temperature/), Levitus et al. (2009), NCEP/NCAR reanalysis, and World Ocean Atlas, http://www.esrl.noaa.gov/psd/data/gridded/ data.nodc.woa98.html. Carbon cycle: (CO2Now.org, http://co2now.org/) and present day NPP(http://daac. ornl.gov/cgi-bin/dsviewer.pl?ds id=614). Weight: A CPI (Murphy et al 2004, Nature)-like score.

21st Century

Fig. 1 JUMP-LCM (Tachiiri et al, 2010, GMD) Physical feedback (e.g., albedo and evapotranspiration is not considered)

Result

large.

B. By year 2300, the predicted global temperature increase has 2.7 ± 1.5 (K) (2SD), while without using present-day measurements, so each model simulation has equal weighting, gives a slightly smaller mean of 2.5 (K). In the peak emission period, the projected emission is 10.6 ± 2.5 (PgC), while RCP4.5 emission scenario and MIROC-ESM are (11.4 and 9.8 PgC). 5. Our ensemble predicts that with a probability of 3%, then there will need to be an extended period of time with global negative emissions for 2151-2200.

Allowable emission (a): uncontrained, b): constrained

CO₂ emission in 1959-2005

. The ensemble mean of the experiment allows slightly smaller emissions than the standard RCP4.5 emission scenario.

2. Despite our extensive use of contemporary measurements to further constrain the results, the range of temperatures corresponding to RCP4.5 is