

- climate change
- forcing

especially in the months with the greatest cloud fraction.

Evaluation of model differences in the cloud forcing response of the southeastern Pacific marine subsidence region Anita D. Rapp

arapp@tamu.edu Texas A&M University

This research is supported by NSF Grant AGS-1128024 & NASA Grant NNX10AM21G

 Model mean cloud fraction compares favorably with MODIS, however the sensitivity of cloud fraction to temperature varies.

CloudSat & MODIS Cloud Properties

Conclusions

- observations

		Table 1. MODIS cloud properties for			
	25	precipitating and non-precipitating clouds.			
····-ე თ			All Clouds	Non-	Precipitating
	20 9			Precipitating	
-10	currenc	LWP (g/m ²)	113	87	272
	15 Ö %	Re	16	15	21
	dneucy 10	Tau	11	9	19
·20	ain Fre	Z _{top} (km)	1.53	1.47	1.79
25	5				

Highest CERES CRF sensitivity to temperature corresponds to region with highest CloudSat-estimated precipitation frequency.

+Still a large spread in model response of shortwave cloud forcing to temperature in southeastern Pacific subsidence region

+Seasonal cycle and mean regional response show that models generally underestimate shortwave cloud forcing – largest differences between observations & models in cloudiest months

+Even for models that accurately simulate the mean regional response, the geographic distribution of the response differs from

+Largest CERES CRF sensitivity to temperature in region with the highest CloudSat-estimated precipitation frequency – few models show the highest sensitivity in this region