More precise predictions of future polar winter warming estimated by multi-model ensemble regression

Thomas J. Bracegirdle ${ }^{1}$ and David B. Stephenson ${ }^{2,3}$
${ }^{1}$ British Antarctic Survey, UK (tibra@bas.ac.uk); ${ }^{2}$ University of Exeter, UK; ${ }^{3}$ NCAS-Climate, UK.

Introduction

Here we introduce a simple robust statistical framework for providing more precise local (grid-box) projections from ensembles of climate models. Projections at grid-box spatial scales are important for impacts studies. The methodology builds on previous work in which inter-model relationships between simulated present-day and future Arctic-scale parameters are used to estimate uture observations from present-day observations (e.g. snow-albedo feedback Hall and Qu, 2006] and Arctic total sea ice extend [Boe et al., 2009]).

The main element of our framework involves inter-model relationships between present-day-mean bias and projected response (state dependence) in local near-surface winter temperature. Linear regression onto this state dependence is used to predict future observations at each grid point in turn (Fig. 1a)
The second important element is identifying influential outlier climate models that have large leverage in the regression
The third element is determining the point at which errors stop decreasing wher ineasing ensemble size (or whether a larger ensemble is required). ogene (ie reduced variance in the statistical prediction) climate change projections at the grid-box scale We refer to this statistical model-based approach as Ensemble Regression (ER). For locations where the multi-model climate change respore is uncorrlated with present-day climate the ER approach effectively reverts to an Ensemble Mean (EM) approach In addition ER improves on and avoids difficulties associated with ad-hoc weighting of climate models (Giorgi and Mearns, 2002; Murphy et al., 2004; Connolley and Bracegirdle, 2007; Raisanen et al., 2010).
(a)

(b) Ion, lot: 0,75

Table 1. CMIP3 models

Method

The ensemble regression model gives the following prediction of the expected observable mean climate change response (\hat{y}_{y}) based on observed present-day mean $\left(x_{0}\right)$.

$$
\hat{y}_{o}=\bar{y}+\hat{\beta}\left(x_{0}-\bar{x}\right)
$$

Because of the small number of climate models, it is also important to test how much influence each model has on the mean response. We investigate this calculating the leverage for each Mo model, which identifies mode 10 as oveny details see Bracegrale and

Results and Conclusions: Arctic

Fig. 1. Scatter plots of $21^{\text {st }}$ century predicted changes versus present-day means in wintertime near-surface temperatures at (a) 65S, 0 E in July and (b) 75N, OE in January. Each small asterisk represents one CMIP3 climate
model, which are annotated by the numbers used as identifiers in Table 1 . The straight lines fits are from linear regression and the solid curves show the 95% confidence intervals. The vertical dashed lines show the present-day observations (ERA-40 data) with large asterisks showing the associated mean response and confidence interval from linear regression The horizontal dotted line shows the simple equal-weigh meriod 1970-1999
average of $21^{\text {st }}$ century change. Present-day mean is the perid from all 20c3m runs and $21^{\text {st }}$ century change is the difference between the period 2069-2098 from all sresa1b runs and present-day mean

${ }^{-1}(\mathrm{e})^{1}$

For the CMIP3 ensemble results from the ER approach show a broadly similar pattern to those from EM (Fig. 3a,b), but with key differences (Fig. 3c):

- Less warming over the Barents Sea by approximately $3^{\circ} \mathrm{C}$.
- Less warming over parts of the northern boundary of the Pacific - Fig. 3d shows that
differences shown in Fig. 3c are associated with biases in the CMIP3 ensemble mean present day climatology
The ER method gives more precise predictions near the sea ice edge (Fig. 3e); with approximately 30% reductions in prediction interval over the Sea of Okhostk, Bering Sea and Labrador Sea.
Fig. 3. (a) Estimates of January near surface temperature change over the $21^{\text {st }}$ century from the $E M$ method and (b) from the $E R$ method. Model 10 is excluded and ECMWF ERA-40 data is used for the observed near-surface temperature. (c) The difference between (b) and (a), with locations of significant difference indicated by hatching. A difference is considered significant if the
EM prediction lies outside the 95% confidence interval of the $E R$ interval (e.g. Fig. 1a). (d) The difference between the present-day climatology in the CMIP3 ensemble mean and ERA-40. (e) Ratio climatology in the CMIP3 ensemble mean and ERA-40. (e) Ratio
of the 95% prediction interval from the $E R$ method to that from the EM method.

Results and Conclusions: Antarctic

For Antarctic winter (July) key differences between ER and EM predictions are - The ER method gives warming of approximately $2^{\circ} \mathrm{C}$ more than estimates based on the EM method northwest of the Weddell Sea approximately $62^{\circ} \mathrm{S}, 5^{\circ} \mathrm{W}$ (Fig. 4c).
-There is a large region of significantly less warming extending westwards from the tip of the Antarctic Peninsula, centred on $\sim 60^{\circ} \mathrm{S}$ $-90^{\circ} \mathrm{W}$ (Fig. 4c). - As was found in the Arctic winter these differences coincide with regions of larg bias in the present-day cinsmble (Fig 4d). ensemble average (Fig. 4d) interval of 50% extend acros sector of the Southern Ocean between 0° and (Fig. 4e).

CMIP5 preliminary results

Fig. 5. As in Fig. 1, but for CMIP5 models. Present-day mea is the period 1976-2004 from all available 'historical' runs and $21^{\text {st }}$ century change is 'he difference between the mean.
From a preliminary analysis of the CMIP5 dataset (Fig. 5), a state-dependence similar to that seen in the CMIP3 models (Fig. 1) appears occur.

British
Antarctic Survey

