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Abstract
We propose a three-dimensional thermo-viscoelastic constitutive
damage model law for ice creep, suited for ice in polar regions.
The model has been validated by published laboratory experimen-
tal data and is implemented in the commercially available finite el-
ement code ABAQUS by adopting a strain-based algorithm in a La-
grangian description. The model is used to investigate conditions
that enable surface, englacial and basal crevasse formation resulting
from different boundary conditions applied to an idealized rectan-
gular slab of ice in contact with the ocean.

Viscoelastic Constitutive Model
• Additive decomposition: Assuming small strains [1],

εkl = εekl + εdkl + εvkl, (1)

where the superscripts e, d, and v denote the elastic, delayed elas-
tic and viscous components, respectively.

• Stress-strain relations: The strain components are given by,

σ̃kl = E
3(1−2ν)

εeiiδkl +
E

(1+ν)

(
εekl − 1

3
εeiiδkl

)
, (2)

ε̇dkl = A
(

3
2
Kσ̃dev

kl − εdkl
)
, (3)

ε̇vkl = 3
2
KN

(
3
2
σ̃dev
mn σ̃

dev
mn

)(N−1)/2

σ̃dev
kl , (4)

where E and ν are the Young’s modulus and Poisson’s ratio, re-
spectively; KN and N are the viscous parameters; A and K are
delayed elastic material parameters; σ̃dev is the deviatoric part of
the effective stress denoted by σ̃.

• Temperature dependence: The relation for KN is,
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where Q is the activation energy for creep; R is the universal gas
constant or the Boltzmann’s constant; T is the temperature and
the reference temperature, Tm = −10◦C.

Continuum Damage Model
• Effective stress concept: We define a transformation,

σ̃ij = Mijkl σkl, (6)

Mijkl = 1
2
(ωikδjl + ωjkδil), ωik(δkj −Dkj) = δij . (7)

whereM is the damage effect tensor,D is the damage tensor and
σ denotes the Cauchy stress tensor.

• Damage rate: In a Lagrangian framework assuming small strains,

Ḋij =

{
fij , if max{εij} ≥ εth,
0, if max{εij} < εth.

(8)

where fij is the damage evolution function; and εth is a strain
threshold for damage initiation.

• Damage evolution function: The generalized form reads [2, 3],

fij = B〈χ〉r
(
ωmnξ

(1)
m ξ(1)n

)kσ [
(1− γ) δij + γξ

(1)
i ξ

(1)
j

]
, (9)

χ = ασ̃(1) + β

√
3

2
σ̃dev
mn σ̃dev

mn + (1− α− β)σ̃kk, (10)

whereB, r, kσ, α, β, γ are model parameters; σ̃(1) is the maximum
eigenvalue of σ̃; ξ(1) is the eigenvector associated with σ̃(1); χ is
the Hayhurst’s equivalent stress measure and a function of the
effective stress tensor, σ̃; the Macaulay brackets are defined such
that, 〈χ〉 = χ if χ ≥ 0 and 〈χ〉 = 0 if χ < 0.

• Tension-compression asymmetry: The different behavior of ice
under compression and tension is captured by kσ as,

kσ =

{
[k1 + k2|σii|], for 0 ≤ σii ≤ 1 MPa,
−[k3 + k4|σii|], for −3 MPa ≤ σii < 0.

(11)

where k1, k2, k3, and k4 are determined using a linear fit.

• Temperature dependence: The relation B is,
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where U is the activation energy for damage.

Model Calibration

(a) Ice under uniaxial tension (b) Ice under uniaxial compression (c) Temperature dependence of KN and B
The model parameters E, ν,A,K,KN , N describe the constitutive behavior; α, β,B, r, kσ, and γ describe the orthotropic damage evolution;
and Q,U describe the temperature dependence. Herein, these parameters are calibrated from the experimental curves of strain rate vs.
time for uniaxial tension, log-log plots of strain rate vs. time for uniaxial compression. The log-log plots of octahedral shear strain rate vs.
octahedral shear strain are used to calibrate the temperature dependence.
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Model Validation

(d) Ice under uniaxial loading |σ| = 0.8 MPa (e) Ice slab under four point bending (f) Ice under biaxial compression

From figure (d), it is evident that after 140 hours ice under tension exhibits sudden rupture whereas no such failure is observed
under compression, even at a later time. Figure (e) shows the good agreement between model results and experiments for
the four point bending test in the initial stages of creep. From figure (f), it is apparent that the model is able to capture the
increase in the strength of ice under biaxial compression, quite well.

Ongoing Work

(g)Uniaxial tension - pure mode I (quadrilaterals) (h) Biaxial tension (triangles) (i) Biaxial tension (quadrilaterals)

(j) Crevasse formation in idealized ice slabs (not to scale)

The mesh dependence of numerical results using the current
local damage approach is clear from the above figures (g), (h)
and (i). In order to ameliorate the numerical scheme and re-
duce its mesh dependence we are currently pursuing a nonlo-
cal approach for damage evaluation. In the idealized ice slab
simulations, three external forces are considered: (1) Gravity as
a distributed body force; (2) Water pressure as surface pressure
near the ocean-ice boundary; and (3) A stretching horizontal
tensile stress for the expanding ice slab. The bottom boundary
condition can be varied from free slip to no slip using spring
elements at the bottom boundary, as indicated in figure (j).

(k) No slip at the bottom (l) Free slip at the bottom
The simulations results in figures (k) and (l) suggest that the surface crevasses are relatively unaffected by the bottom bound-
ary conditions. The effect of the bottom boundary condition on basal cracks needs to be investigated.
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