Assessment of WRF physical parameterisations for regional climate simulations over the CORDEX European domain

Priscilla A. Mooney1, Frank J. Mulligan2, Rowan Fealy3

*mooney@atm.ox.ac.uk

1Department of Physics, University of Oxford, UK
2Department of Experimental Physics, National University of Ireland Maynooth, Kildare, Ireland
3ICARUS, Department of Geography, National University of Ireland Maynooth, Kildare, Ireland

Previous address: MMM Division, National Center for Atmospheric Research, Boulder, CO, USA

Introduction

In this study, we examine the Weather Research and Forecasting (WRF-ARW) model as a regional climate model for the European region (in accordance with Region 4 of the WCRP CORDEX Experiment - Figure 1). The work shown here forms part of a larger body of research (Mooney et al) which is undertaken with a view to identifying the optimal choice of parameterisations for this region.

Surface Temperature

Figure 2 is a typical example of the mean monthly surface temperatures for the eight Rockel regions and it shows that:

- All WRF simulations capture the general trend in surface temperatures over the seven-year period.
- Simulations using the NOAH LSM exhibit lower bias in summer compared with those in which RUC is used.

Figure 3 is a typical example of the Taylor diagram for the 8 Rockel regions and it shows that:

- All simulations compare favourably to EOBS in terms of correlation coefficient, RMS difference and variability about the mean.
- Simulations using the NOAH LSM capture variability about the mean more accurately than those using RUC.

Daily Precipitation Rates

Figure 4 is a typical example of the mean daily precipitation for each month over the seven-year period for the 8 Rockel regions and it shows that:

- All simulations overestimate the mean daily precipitation rates in winter months compared with EOBS.
- Simulations using the NOAH LSM exhibit the general precipitation trends observed in the EOBS data albeit with an offset.
- Simulations using the RUC scheme are closer to EOBS in summer months only.

Summary/Future Work

Summary for the domain and resolution examined:

- WRF reproduces surface air temperatures reasonably well but models precipitation poorly.
- Model choice of Land Surface Model (LSM) used has significant impact on models ability to simulate surface air temperature and precipitation.
- Model simulations of surface air temperature and precipitation are largely independent of choice of Microphysics Scheme and LW Radiation Scheme.
- There is no clear optimum set of parameterisations for all variables for all regions.

Future Work:

- Compare WRF simulations to other datasets e.g. CRU, TRMM.
- Extend the study to examine sensitivity to other atmospheric variables, e.g. U10, V10, MSLP.

References

1. Mooney PA, Mulligan FJ, Fealy R. (in prep) Journal of Climate

Model Configurations

WRF-ARW model (version 3.1) is used to simulate the climate over the European CORDEX domain (see figure 1) for the period 1989-1995 with a spatial resolution of 0.44° for 8 different combinations of physical parameterizations (see Table 1). Initial conditions, lateral boundaries and sea surface temperatures are provided by ERA-Interim reanalysis. The period 1989-1995 was chosen to economize on computational resources and the availability of ERA-Interim data.

Surface temperature, precipitation and mean sea-level pressure (MSLP) are compared to EOBS; a gridded dataset of daily observed temperature, precipitation and MSLP (Haylock et al., 2008). These variables are examined over eight Rockel regions (Christensen & Christensen, 2007) indicated by solid blue lines in Figure 1. We examine monthly mean values, standard deviation (amplitude of variability about the mean), temporal correlation and bias corrected root-mean-squared (RMS) difference.

Table 1. The combination of parameterization schemes used in each experiment.

Acknowledgements: P.A. Mooney acknowledges funding from the Irish Research Council for Science, Engineering and Technology, co-funded by Marie Curie Actions under FP7. This work is part funded under the Programme for Research in Third Level Institutions (PRTLI) administered by the Irish Higher Education Authority under the National Development Plan and with partial support from the European Regional Development Fund. A portion of this work has been realised through NUI Maynooth’s HPC facility.

WCRC Open Science Conference Climate Research in Service to Society, Denver, Colorado 24-28 October 2011