NEWS Climatology Project: The State of the Energy Budget at Continental to Global Scales

Tristan L’Ecuyer1, Matthew Rodell2, Hiroko Beaudoing3, William Olson4, Bing Lin5, Seiji Kato6, Carol Anne Clayson7, Eric Wood8

1: University of Wisconsin-Madison (tristan@aos.wisc.edu); 2: NASA Goddard Space Flight Center; 3: Earth System Science Interdisciplinary Center/Univ. of Maryland; 4: Joint Center for Earth Systems Technology/Univ. Maryland Baltimore County; 5: NASA Langley Research Center; 6: Florida State University; 7: Princeton University

What is the NEWS Energy and Water Cycle Climatology Project?

Why? Our ability to predict climate change fundamentally depends on our ability to model the processes that govern exchanges between key reservoirs in the global energy budget and their coupling to corresponding changes in the water cycle.

What? The goal of the NEWS Climatology Project is to compile benchmark estimates of water and energy fluxes in the present day climate providing the science community with a critical resource for evaluating energy balance and water cycles in climate models.

How? Combine state-of-the-art estimates of component fluxes from contemporary Earth-observing satellites to document the energy and water cycles on continental and monthly scales. Use rigorous estimates of uncertainties in each flux to establish optimal budgets that satisfy global energy and water balance constraints.

Underpinning NEWS Datasets

Datasets employed in this study were primarily developed by investigators in the NASA Energy and Water cycle Study (NEWS) and many can be accessed through the NEWS website, http://www.nasa-news.org. To document the current state of the climate system while minimizing the impact of interannual variability on ENSO timescales the analysis targets the most up-to-date observational datasets from the 10 year period from 1998-2007. Surface radiative fluxes are defined based on the GEWEX SRB and ISCCP FD products. Latent and sensible heating estimates over the ocean are obtained from the SeaFlux dataset while Princeton University latent and sensible heat products are used over land. The MERRA and GLDAS reanalysis products are also used to fill gaps in observational datasets and establish error bounds.

Combined SFC Flux Uncertainties

A concerted effort has been made to assess the uncertainties in each product through a combination of product intercomparisons, external validation, and rigorous sensitivity studies.

Examples of surface flux datasets: (a) net surface radiation from the GEWEX SRB product, (b) latent heat flux from the Princeton SRB dataset, and (c) sensible heat flux from MERRA (land) and SeaFlux (ocean).

Constrained Optimization of the Global Energy and Water Cycles

A variational framework makes it possible to test the extent to which balance can be achieved within derived uncertainties. By optimally adjusting component fluxes based on rigorous uncertainty estimates it is possible to supply the modeling community with products that satisfy global balance constraints.

General budget equation:

Minimum occurs when:

Annual Budgets: Surface radiative fluxes often exceed latent and sensible heat fluxes at the surface regardless of the combination of datasets chosen but the resulting bias is within the cumulative uncertainties in the component datasets.

Summary

• The NEWS Energy and Water Cycle Climatology Project will provide new estimates of the state of the energy and water cycles on continental and monthly scales.
• With rigorous uncertainty estimates and the novel optimization approach adopted for applying budget constraint, these products are ideal for evaluating the representation of present day climate in GCMs.
• Ongoing work seeks to expand the optimization procedure to exploit the strong coupling between the energy and water cycles.

Surface Energy Balance

\[S = F_{SW} + F_{LW} - F_{SW} - SH \]

Annual mean surface energy balance after optimization. Here all fluxes have been simple scaled by the magnitudes of the global adjustments. A more comprehensive regional-scale budget optimization is currently underway.

Optimal budget estimates of surface energy balance (uncertainties in parentheses). Raw observations and errors are also presented. Bold have value for model comparisons.