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Tropical Intraseasonal Variability Simulated in the NASA GISS General Circulation Model
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FIG. 2 (left). November-April mean precipitation (mm day?) of (a) GPCP, (b)
ARb5a_Entl, (c) AR5a, and (d) AR4a

FIG. 3 (right). Variance of 20-100-day bandpass filtered precipitation (mm? day?)
of (a) GPCP, (b) AR5a_Entl, (c) AR5a, and (d) AR4a

The new version of Model E, which will be used for the Intergovernmental Panel for Climate Change (IPCC) Sth Assessment Report (ARS) shows clear
improvements compared to the AR4 version in simulating the magnitude of intraseasonal variability, and the amplitude and phase speed of convectively
coupled Kelvin waves. Despite these improvements, the ARS version still lacks the Madden-Julian oscillation (MJO) mode, which dominates
intraseasonal variability over the tropics and interacts with many other climate components in nature.
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FIG. 5 (right). The power spectrum of the unfiltered PC derived by projecting the CEOFs onto unfiltered data
(seasonal cycle removed): first mode (blue) and second mode (green). (a) NCEP/NCAR and AVHRR, (b)

AR5a_Ent1. Dashed lines show the 99% confidence limit for a red noise spectrum. FIG. 8 (left). Hovmuller diagram of 15°S-15°N averaged precipitation during a strong-MJO period selected based

on MJO phase diagram. a) AR5a_Ent1, b) 10-day and c) 20-day after reinitialization, and d) AR5a.

The MJO is defined here as the leading mode of coherent variability between anomalies of upper and lower
tropospheric zonal wind, and convection. Combined empirical orthogonal function (CEOF) approach (Wheeler
and Hendon 2004) is adopted for this purpose. The CEOFs in AR5a Entl capture the gross features of the
leading mode in observations, such as the location of the maximum in convection (minimum OLR), baroclinic
wind structure, and planetary spatial scale. The power spectrum of the unfiltered PC shows that the MJO
extracted by CEOF has spectral peaks near observed MJO time scale that are physically meaningful and
distinct from a red noise process.
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FIG. 6 (left). MJO life-cycle composite of 20-100 day bandpass filtered, 10°S-10°N averaged specific humidity
anomaly (upper panel), and filtered, 10°S-10°N averaged OLR anomaly (lower panel) at different phases in
which the convective anomaly is located near the Indian Ocean and Maritime continent. a) ERA40/AVHRR, and
b) AR5a_Entl
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By re-initializing relatively poor-MJO version with restart file from relatively better-MJO version, a series of
30-day integration is performed to examine the impacts of the parameterization changes on the organization of
tropical convections. The results show that the poor-MJO version with smaller entrainment rate has a tendency
to reduce the contrast between dry and wet regimes, thereby the tropical convections become less organized
and diffusive.

FIG. 7 (right). Phase-longitude diagram of OLR [contour plotted every 3 W m™, positive (green) and negative
(purple)] and 925-hPa moisture convergence (kg kg™ s, upper)/evaporation (W m2, lower). (a), (c) Observations,

Global Mean number of Tropical Cyclones per month

and (b), (d) AR5a_Entl. Phases are from MJO life cycle composite and values averaged between 10°S and 10°N. ) gg;;grvaﬁons MJO vs. Tropical cyclone
As consistent with previous studies, simulation fidelity of the MJO strongly depends on cumulus FIG. 10. Number of tropical cyclones (NTC) per month globally. Blue: Observations, Green:
parameterization. When the convective scheme is tuned to have greater entrainment, the ARS version of 10- AR5a, and Red: AR5_Ent1.
Model E simulates precipitation variability with spatial and temporal scales of the MJO. The MJO lifte-cycle
composites of outgoing longwave radiation, evaporation, 925-hPa moisture convergence, specific humidity The statistics of tropical cyclones (e.g. number) in the model are also affected
shows that the simulated MJO has realistic features. In observations and AR5a_Entl, positive moisture 4 § BN by the changes in convection scheme. With the larger entrainment rate, the
anomalies in the lower troposphere develops ahead (east) of convective anomaly related to the MJO. b | model simulates a smaller number of tropical cyclones. Our results suggest
Anomalous 925hPa moisture convergence leads convective anomaly, suggesting its role in moistening of the | that modeling entrainment rate in convection scheme is crucial in the
lower troposphere. o LI WR KA Wa R RE KLU UL RLEEL - simulation of the tropical ISV, such as the MJO and tropical cyclones.



