Multiple equilibria in a cloud resolving model

Sharon Sessions¹,* Satomi Sugaya¹, David Raymond¹, Adam Sobel², Stipo Sentić¹

¹New Mexico Tech

²Columbia University

World Climate Research Programme 2011

*This work supported by the National Science Foundation

Definition

In limited domain simulations which parameterize the large scale, **Multiple equilibria** refers to a steady state which either

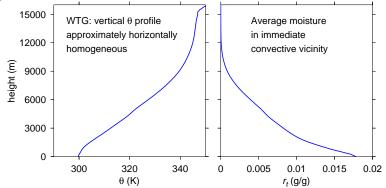
- supports persistent precipitating deep convection
- remains completely dry

under identical forcing and boundary conditions.

Definition

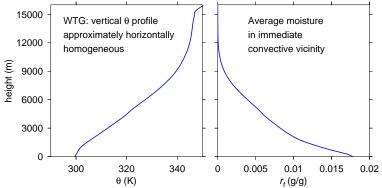
In limited domain simulations which parameterize the large scale, **Multiple equilibria** refers to a steady state which either

- supports persistent precipitating deep convection
- remains completely dry


under identical forcing and boundary conditions.

- Exists in
 - single column model (Sobel, Bellon & Bacmeister, 2007)
 - cloud resolving model (Sessions, Sugaya, Raymond & Sobel, 2010)
- Depends on the initial tropospheric moisture

- Charney (1963) scaling analysis: $\delta heta_{horiz} \sim 10^{-3} imes heta$ in the tropics
- Sobel & Bretherton (2000) used this to parameterize the large scale tropical environment in a single column model (SCM)
- Raymond & Zeng (2005) adapted WTG to a cloud resolving model (CRM)


Implementing WTG in a cloud resolving model

Radiative-convective equilibrium (RCE) profiles of θ and r_t are used to represent ambient environment

Implementing WTG in a cloud resolving model

Radiative-convective equilibrium (RCE) profiles of θ and r_t are used to represent ambient environment

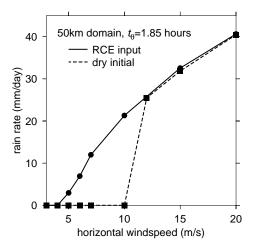
- Constrain θ profile to ambient profile by generating WTG vertical velocity, w_{WTG}, to exactly balance diabatic heating
- Moisture horizontally advected from immediate vicinity via mass continuity

Sessions Sugaya Raymond Sobel Sentić Multiple equilibria in a cloud resolving model

Run parallel WTG experiments with

- identical boundary conditions
- identical ambient environments (WTG reference profiles)
- initialize domain with ambient moisture or completely dry

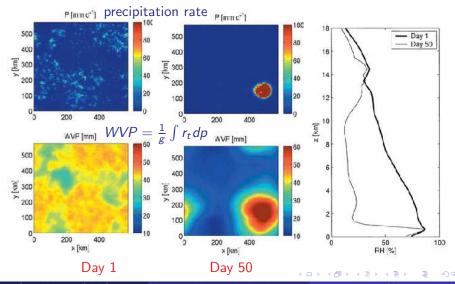
Run parallel WTG experiments with


- identical boundary conditions
- identical ambient environments (WTG reference profiles)
- initialize domain with ambient moisture or completely dry

2D CRM, periodic boundary conditions

- horizontal domain sizes: 50-200 km (0.5-1 km resolution)
- 20 km vertical dimension (250 m resolution)
- statistics averaged over last 30 days of 4 month simulations

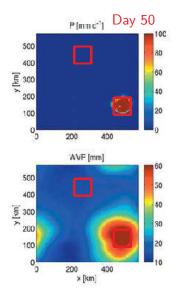
Multiple equilibria in a cloud resolving model


Sessions, Sugaya, Raymond & Sobel (2010)

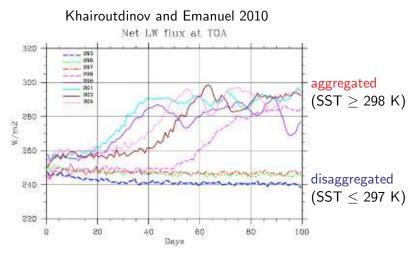
WCRP 2011 6 / 11

Connection to self-aggregation

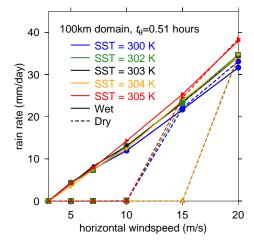
Bretherton, Blossey & Khairoutdinov (2005)


Sessions Sugaya Raymond Sobel Sentić

Multiple equilibria in a cloud resolving model


Connection to self-aggregation

Hypothesis:


- Multiple equilibria in a small WTG domain is analogous to precipitating or dry regions of the larger RCE self-aggregated state
- Use WTG multiple equilibria experiments to identify conditions which permit self-aggregation

Self-aggregation dependence on sea-surface temperature

Strong nonlinear dependence of self-aggregation on SST

- WTG reference profile generated for each SST
- WTG experiments have same SST as reference conditions
- Existence of multiple equilibria depends on SST

Multiple equilibria in small WTG domains may be a computationally economic way to investigate self-aggregation

Hypothesis:

• Conditions which permit multiple equilibria correlate to conditions which promote self-aggregation