

DEVELOPING RAINFALL ONSET INFORMATIC FOR AGRICULTURE IN SENEGAL, INCLUDING THE DISTINCTION OF TRUE AND FALSE ONSE EVENTS.

Ousmane NDIAYE^{1,2}, and M. Neil WARD^{2,3}

¹Agence Nationale de la Météorologie du Sénégal (ANAMS), Senegal ²International Research Institute for Climate and Society (IRI), Columbia University, New York, ³ Independent Scholar, Basking Ridge, New Jersey, USA

WCRP, Climate Research in Service to Society, 24-28 October 2011, Denver Colorado, USA

Daily rainfall seasonal evolution : South to North.

DEFINITION OF RAINFALL ONSET : farming perpective

Significant rainfall event : 20mm over less than three-day period

- First rainfall event : First onset observed at any station in the region.
- First large scale rainfall event : onset observed simultaneously over at least three stations in the region
- Separate :
 - true start : first event not followed by "severe" dry spell
 - False start : followed by "severe" dry spell

Northern and southern regions division in Senegal

ATMOSPHERE DURING ONSET DATE

No filtering just remove the daily mean : 1968-2008

Propagation around the first regional Onset event NORTH SOUTH

PROPAGATING FEATURES AROUND THE ONSE 10-20° North (Senegal)

South : 37° in $17 \text{ days} \approx 2.8 \text{ m/s}$ North : 35° in 5 days $\approx 8.5 \text{ m/s}$ (easterly wave 3-5 days 15° N)

OLR time space evolution around the onset date

Same period of onset but followed by dry spell which affect any planning

False Start MINUS True Start – Evolution of Atmosphere Before, during and after the rainfall event

PWAT (shaded) and Wind 850 REg North

Theta at 925hPa North

SEASONAL FORECASTING OF THE ONSET

EOF2 (13%) of first onset date 1968-2008

Building two regional indices : standardized index '

Onset STDZ index over northern Senegal 1981-2008 Correlation Onset verus SST

True Onset	Apr	Мау	Jun	Jul 🎽
R	0.12/0.23(2)	0.30	0.28/0.36(5)	0.43

Onset STDZ index over southern Senegal 1981-2008

EOF2 april SST 1968-2008 (24%)

0.27/0.37(5)

0.34

Correlation Onset verus SST

031/0.36(4)

R

0.31/0.42(4)

CONCLUSION

> Two onset regions over Senegal (north and south) following the ITO

Clear signal at synoptic time scale of the onset : propagation of atmospheric signal (PWAT, Va at 600-700 hPa) – northern region onset more influenced by faster propagating features

Large scale signal (SST) has some influence on the onset:
North Senegal : near global SST (time of influence by ENSO)
South Senegal : tropical Atlantic dipole (new timing of influence around May)

Early warning system for False and true onset : anomalous weak PWAT with cold air intrusion (contrasting process for north and south given different time in monsoon evolution – not shown here)

➢ Does MJO play a role during certain years ? Inter-action between Kelvin and Rossby waves ? What about SHL ? NAO ?

THANK YOU

False Start MINUS True Start – Evolution of Atmosphere Before, during and after the rainfall event

PWAT (shaded) and Wind 850 REg South

Theta at 925hPa South

