

1

Comparative Analysis of Upper Ocean Heat Content Variability from an Ensemble of Operational Ocean Reanalyses

<u>Yan Xue</u>⁽¹⁾, Magdalena A. Balmaseda ⁽²⁾, Tim Boyer⁽⁶⁾, Nicolas Ferry ⁽³⁾, Simon Good ⁽⁴⁾, Ichiro Ishikawa ⁽⁵⁾, Arun Kumar⁽¹⁾ Michele Rienecker ⁽⁷⁾, Tony Rosati⁽⁸⁾, Yonghong Yin⁽⁹⁾

⁽¹⁾ NOAA/NCEP, 5200 Auth Rd, Camp Springs, MD 20746, USA, Yan.Xue@noaa.gov, Arun.Kumar@noaa.gov
⁽²⁾ ECMWF, Shinfield Park, Reading RG2 9AX (UK), Magdalena.Balmaseda@ecmwf.int
⁽³⁾ Mercator-Océan, 8-10 rue Hermès, 31520 RAMONVILLE ST AGNE (France), Nicolas.Ferry@mercator-ocean.fr
⁽⁴⁾ Met Office Hadley Centre, FitzRoy Road, Exeter, Devon, EX1 3PB (UK), Simon.Good@metoffice.gov.uk
⁽⁵⁾ Japan Meteorological Agency, 1-3-4 Ootemachi, Chiyoda-ku, Tokyo, 100-8122 (Japan), iishikawa@met.kishou.go.jp
⁽⁶⁾ NOAA/ NESDIS/NODC, 1315 East-West Highway, Silver Spring, MD 20910, USA, Tim.Boyer@noaa.gov
⁽⁷⁾ NASA/GSFC/GMAO, Greenbelt, MD 20771 (USA), Michele.Rienecker@.nasa.gov
⁽⁸⁾ NOAA/GFDL, Princeton University, P.O. Box 308, Princeton, NJ 08542. Tony.Rosati@noaa.gov
⁽⁹⁾ CAWCR, GPO Box 1289, Melbourne, VIC 3001 (Australia), Y.Yin@bom.gov.au

WCRP Open Science meeting, Oct. 24-28, 2011, Denver, CO

Operational Ocean Reanalysis

Ocean Observations

60

40

20

-20

-40

-60

Operational Ocean Reanalyses

Name	Method & Forcings	In Situ Data	Altimetry Data	Resolution	Period	Vintage	Reference
EN3.v2a	Analysis Correction Scheme	No XBT corrections	No	1°x 1°, 42 Levels Monthly Temp.	1950- present	2009	Ingleby and Huddleston (2007)
NODC	Objective Analysis	No XBT corrections	No	1°x 1°, 16 Levels, 0 to 700m Seasonal Temp.	1955- present	2010	Levitus et al. (2009)
GODAS	3D-VAR	No XBT corrections	NO (Yes in real time)	1°x 1° (1/3° near Eq), 40 Levels Pentad, Monthly	1979- present	2003	Behringer and Xue (2004
ECMWF (S3)	01	No XBT corrections	Yes	1°x1° (1/3° near Eq), 29 Levels Daily, Monthly	1959- present	2007	Balmaseda et al. (2008)
АМС	3D-VAR	No XBT corrections	Yes	1°x1° (1/3° near Eq), 50 Levels Pentad, Monthly	1979- present	2009	Usui et al. (2006)
CFSR	3D-VAR Partially coupled	No XBT corrections	No (Yes in real time)	1/2°x 1/2° (1/4° near Eq), 40 Levels Daily, Pentad, Monthly	1979- present	2010	Xue et al. (2010)
GFDL	EnKF Fully coupled	XBT corrections	Yes	1°x 1° (1/3° near Eq), 50 Levels Daily, Pentad, Monthly	1970- present	2010	Zhang et al. (2009)
GMAO	EnOI Fully coupled	XBT corrections	No	1/2°x 1/2° (1/4° near Eq), 40 Levels Daily, Monthly	1980- present	2011	Rienecker at al. (2011)
MERCATOR (PSY2G2)	KF-SEEK	No XBT corrections	Yes	2°x 2° (1/2° near Eq), 31 Levels Daily, Pentad, Monthly	1979- present	2007	Drévillon et al. (2008)
BOM (PEODAS)	EnKF	No XBT corretions	No	2°x 1.5 ° (1/2° near Eq.), 25 Levels Daily, Monthly	1980- present	2009	Yin et al. (2010)

Heat Content Analysis

- How well is the mean upper 300m ocean heat content (HC300) analyzed by operational ocean reanalysis (ORA)?
- How well is the interannual variability, multi-decadal and long term variability of HC300 analyzed by ORAs?
- What are the impacts of changes of ocean observing systems on the quality of HC300 analysis?
- What are the prospects for operational HC300 climate indices derived from an ensemble of operational ORAs?
- What is the role of HC300 on potential predictability of ENSO, Indian Ocean Dipole and Atlantic Nino?

Mean Heat Content Analysis

Impacts of Changes of Ocean Observing Systems

Data Count

RMSD from EN3

HC300 in Equatorial Indian Ocean (2°S-2°N)

9

HC300 Anomaly Indices for ENSO, IOD and Atlantic Nino

Linear Trend of HC300 Anomaly in 1993-2009

HC300 Anomaly Indices for Multi-decadal Variability

Mean HC300 and HC300 Anomaly in 70°S-70°N

Summary

- Consistency among ORAs tends to increase with time, particularly in the tropical Pacific, the tropical Indian Ocean and extra-tropical southern oceans, and is partly due to constraints from tropical mooring arrays and Argo floats.
- HC300 anomalies (HC300a) associated with ENSO are highly consistent among ORAs; HC300a associated with IOD are moderately consistent, and model-based analyses are superior to in situ-based analyses in the eastern pole of the IOD; HC300a associated with the Atlantic zonal mode has considerable uncertainties among ORAs, which are comparable to signals.
- Large multi-decadal variability and long-term trends exist in HC300. The consensus among ORAs suggests that the mean HC300 in 70°S-70°N has a brief cooling periods during early 1980s and 1992-1993 related to the volcanic eruptions of the El Chichon and Mt. Pinatubo, and a short warming in 1985-1991, and then a continuous warming in 1994-2003, followed by a persistence or weak cooling in 2004-2009.
- An ensemble of operational ocean reanalyses provide a tool to monitor signals and uncertainties in upper ocean heat content in real time.

HC300 in Equatorial Atlantic (2°S-2°N)

HC300 Anomaly Correlation with EN3

