GLACE-2: Impact of land initialization on subseasonal forecasts

Randal Koster Global Modeling and Assimilation Office, NASA/GSFC Greenbelt, MD 20771 USA randal.d.koster@nasa.gov

With contributions from the entire GLACE-2 team (see later slide)

GLACE-2: An international project aimed at quantifying soil moisture impacts on prediction skill.

Overall goal of GLACE-2: Determine the degree to which realistic land surface (soil moisture) initialization contributes to forecast skill (rainfall, temperature) at 1-2 month leads, using a wide array of state-of-the-art forecast systems.

GLACE-2: Experiment Overview

Series 1:

GLACE-2: Experiment Overview

<u>Step 3:</u> Compare skill in two sets of forecasts; isolate contribution of realistic land initialization.

Land model initialization

Baseline: 100 Forecast Start Dates

	N	5				5	N	5	N	
	PQ	PQ	Not	Not	m	m	Jul .	Jul .	AND	PUO
1986	0	0	0	0	0	0	0	0	0	0
1987	0	0	0	0	0	0	0	•	0	•
1988	0	0	0	0	0	0	0	•	0	•
1989	0	0	0	0	0	0	0	•	0	•
1990	0	0	0	0	0	0	0	•	0	•
1991	•	0	0	0	0	0	0	0	0	•
1992	•	0	•	0	•	•	•	0	0	•
1993	•	0	0	0	0	0	0	•	•	•
1994	0	0	0	0	0	0	0	0	0	•
1995	0	0	0	0	0	0	0	0	0	•

Each ensemble consists of 10 simulations, each running for 2 months. 1000 2-month simulations.

Participant List

Group/Model	# models	Points of Contact
1. NASA/GSFC (USA): GMAO seasonal forecast system (old and new)	t 2	R. Koster, S. Mahanama
2. COLA (USA): COLA GCM, NCAR/CAM GCM	2	P. Dirmeyer, Z. Guo
3. Princeton (USA): NCEP GCM	1	E. Wood, L. Luo
4. IACS (Switzerland): ECHAM GCM	1	S. Seneviratne, E. Davin
5. KNMI (Netherlands): ECMWF	1	B. van den Hurk
6. ECMWF	1	G. Balsamo, F. Doblas-Reyes
7. GFDL (USA): GFDL system	1	T. Gordon
8. U. Gothenburg (Sweden): NCAR	1	JH. Jeong
9. CCSR/NIES/FRCGC (Japan): CCSR GCM	1	T. Yamada
10. FSU/COAPS	1	M. Boisserie
11. CCCma	1	B. Merryfield

Skill measure: r² when regressed against observations

• After first picture, we focus on multi-model "consensus" view of skill.

• We focus here on JJA, the period when N.H. evaporation is strongest.

• We focus here on the U.S., for which:

- -- models show strong inherent predictability associated with land initialization (GLACE-1!)
- -- observations are reliable over the forecast period

Sample results: Isolated impact of land initialization on r^2 skill score for 3 different models (r^2 from Series 1 minus r^2 from Series 2).

Predicted variable: Air temperature at 16-30 days.

Models appear to differ in their ability to extract skill from land initialization.

Some models (not shown) have almost no skill.

Results for precipitation forecasts are much weaker.

Multi-model "consensus" measure of skill: a prerequisite to a conditional skill analysis

Forecasts: "Consensus" skill due to land initialization (JJA)

<u>Conditional skill:</u> Suppose we know at the start of a forecast that the initial soil moisture anomaly, W_i, is relatively large...

Step 1: At each grid cell, rank the forecast periods from lowest initial soil moisture to highest initial soil moisture:

<u>Conditional skill:</u> Suppose we know at the start of a forecast that the initial soil moisture anomaly, W_i, is relatively large...

Step 2: Separate into quintiles:

Temperature forecasts: Increase in skill due to land initialization (JJA) (conditioned on strength of local initial soil moisture anomaly)

Precipitation forecasts: Increase in skill due to land initialization (JJA) (conditioned on strength of local initial soil moisture anomaly)

Forecast skill levels are highest in regions with both:

a)some inherent model "predictability", and

b)an adequate observational network for accurate initialization

(This is a global analysis.)

Wet/dry asymmetry in skill contributions

Conclusions of GLACE-2 Analysis

- 1. The experiments for GLACE-2 were performed with 13 models.
- 2. The individual models vary in their ability to extract forecast skill from land initialization. In general,
 - -- Low skill for precipitation
 - -- Moderate skill (in places) for temperature, even out to two months.
- 3. Land initialization impacts on skill increase when conditioned on the size of the initial local soil moisture anomaly.
 - If you know the local soil moisture anomaly at time 0 is large, you can expect (in places) that initializing the land correctly will improve your temperature forecast significantly, and your precipitation forecast slightly, even out to 2 months.
- 4. The results highlight the potential usefulness of improved observational networks for prediction and provide some indication of wet/dry asymmetry in skill contributions.

The Second Phase of the Global Land–Atmosphere Coupling Experiment: Soil Moisture Contributions to Subseasonal Forecast Skill

R. D. Koster,^a S. P. P. Mahanama,^{a,b,c} T. J. Yamada,^{a,b,d} Gianpaolo Balsamo,^e A. A. Berg,^f M. Boisserie,^{g,h} P. A. Dirmeyer,ⁱ F. J. Doblas-Reyes,^{j,k} G. Drewitt,^f C. T. Gordon,¹ Z. Guo,ⁱ J.-H. Jeong,^m W.-S. Lee,ⁿ Z. Li,^{a,c} L. Luo,^{o,p} S. Malyshev,^p W. J. Merryfield,ⁿ S. I. Seneviratne,^q T. Stanelle,^q B. J. J. M. van den Hurk,^r F. Vitart,^e and E. F. Wood^p

> ^a GMAO, NASA Goddard Space Flight Center, Greenbelt, Maryland ^b UMBC/GEST. Baltimore. Marvland ^c SAIC, Beltsville, Maryland ^d Division of Field Engineering for Environment, Hokkaido University, Sapporo, Japan ^e ECMWF, Reading, United Kingdom ^f Department of Geography, University of Guelph, Guelph, Canada ^g Center for Ocean-Atmospheric Prediction Studies, The Florida State University, Tallahassee, Florida ^h Meteo-France, Toulouse, France ⁱ Center for Ocean-Land-Atmosphere Studies, Calverton, Maryland ¹ Institució Catalana de Recerca i Estudis Avançats, Barcelona, Spain ^k Institut Català de Ciències del Clima (IC3), Barcelona, Spain ¹NOAA/GFDL, Princeton, New Jersey ^m Department of Earth Sciences, University of Gothenburg, Gothenburg, Sweden ⁿ CCCMA, Environment Canada, Victoria, Canada ^o Department of Geography, Michigan State University, East Lansing, Michigan ^p Princeton University, Princeton, New Jersev ^q Institute for Atmospheric and Climate Science, ETH Zurich, Zurich, Switzerland ^r KNMI, De Bilt, Netherlands

> > (Manuscript received 3 September 2010, in final form 18 February 2011)

ABSTRACT

The second phase of the Global Land-Atmosphere Coupling Experiment (GLACE-2) is a multi-institutional numerical modeling experiment focused on quantifying, for boreal summer, the subseasonal (out to two

J. Hydrometeorology, 12, 805-822, 2011