Climate Change: Progress on Physical Basis —— Report from WG1, IPCC AR5

Qin Dahe

Co-Chair IPCC Working Group I (WGI) State Key Lab. of Cryospheric Sciences, CAS China Meteorological Administration (CMA)

CAS CMA

Denver, USA 28th Oct., 2011

Observed climate change in the world and China
 Emerging questions and response

Station Availability for the Global Historical Climatology Network (GHCN) monthly network reporting:

Atmospheric observations showing

Troposphere temperature

Stratospheric temperature

CAS CMA

From Baringer et al. 2010

Ocean observations showing

Cryosphere observations showing

September Arctic sea ice extent

Glacier mass balance

Multiple redundant indicators showing warming is unequivocal

Global mean trend maps from NCDC surface record for 1901– 2010 (left hand panel) and 1979–2010.

CAS

CMA

Mass loss of the Ice Sheets: Greenland and Antarctica

Extensive thinning of margins of ice sheets

Recent decades accelerated warming in China

Changes of mean annual air

temperature of China, <u>1901 to 2010</u> 1901-2010年中国地表平均气温变化

CAS CMA

Changes of mean annual air

temperature of China, <u>1961 to 2010</u> 1961-2010年中国地表平均气温变化

Percentage of annual precip. anomalies in China, 1961- 2010

中国年降水量距平百分率变化, 1961-2010

> CAS CMA

Number of drought events in China, 1961-2010

1961-2010年中国区域性气象干旱事 件频次变化

Glacier shrinking of Hailuogou Glacier, Mt. Minya Gongga

CAS CMA

Baishui Glacier, Mt. Yulong

Glacier retreating:

1982-1998, 6.25m/ a,

1998-2008, 10m/a

Warming cryosphere in China ____glacier

Mass balance of typical glaciers on the basis of in situ measurement data set.

The spatial distribution of glacier mass balance in China simulated by energy balance model

The Himalayas glacier

Trunk river basin	Branch river basin	The Number of glaciers	The area of glaciers (km ²)	Ice volume (km ³)	
Ganges	Pumqu etc.	2192	3609	330	
	Yarlung Zangbo River	10816	14493	1293	
Indian River	Senger Zangbo	1244	779	44	
	Glang chen gtsang po	789	672	50	
Total		15041 glaciers	19553 km ²	1717 _{km³}	

Met stations (12) data show continue warming in the Himalayas.

The warming rate of high elevations might be even higher

Field investigation on glacier terminal position (red: retreated, blue: advanced)

(Xiao and Ming, in prep.)

Nanga Parbat

Qomolangma

Gymayangzong

Glaciers changes of over three regions on the Himalayas, 2000-2009

	North slope(%)			South slope(%)				
Areas	summary	Shrink/ disappear	Advance	Stable	summary	Shrink/ disappear	Advance	Stable
Everest	-2.17(S) -1.35(V)	53.91	1.89	44.2	-2.34(S) -2.3(V)	45.39	0.18	54.43
Gymma Yangzong	-2.44(S) -2.2(V)	85.86	0	14.14	-2.61(S) -2.51(V)	49.1	0	50.9
Nanga Parbat	-6.41(S) -3.96(V)	94.04	0	5.96	-8.66(S) -9.49(V)	92	0	8

(S) represents the changes of area; and (V) represents the change of volume

Projections (A1B) of future temperature changes on Himalayas

2041~2050 mean minus 1981~2000 mean (℃)

Projections (A1B) of future precipitation changes on Himalayas

2020~2030

2040~2050

CAS CMA

Mass balance

1. Observed climate change in the world and China

2. Emerging questions and response

Emerging Questions on Climate Change

- Has climate change accelerated?
- Is the Greenland ice sheet stable?
- What is the senarias of SLR responding the warming?
- What is the role of clouds and aerosols?
- Is the carbon cycle feedback positive?
- Will there be more droughts?
- Are the mounytain glaciers fast retreating?
- ENSO, monsoon,
 CAS
 CMA

IPCC AR5 WGI Outline

approved at IPCC 31st Session in October 2009

- Chapter 1: Introduction
- Chapter 2: Observations: Atmosphere and Surface
- Chapter 3: Observations: Ocean
- Chapter 4: Observations: Cryosphere
- Chapter 5: Information from Paleoclimate Archives
- Chapter 6: Carbon and Other Biogeochemical Cycles
- Chapter 7: Clouds and Aerosols
- Chapter 8: Anthropogenic and Natural Radiative Forcing
- Chapter 9: Evaluation of Climate Models
- Chapter 10: Detection and Attribution of Climate Change: from Global to Regional
- Chapter 11: Near-term Climate Change: Projections and Predictability
- Chapter 12: Long-term Climate Change: Projections, Commitments and Irreversibility
- Chapter 13: Sea Level Change
- Chapter 14: Climate Phenomena and their Relevance for Future Regional Climate Change
- Annex I: Atlas of Global and Regional Climate Projections

IPCC Climate Change Assessments since 1990

From AR4 to AR5

Rigor 严格

Robustness 确凿Transparency 透明 Comprehensiveness 全面

CAS CMA