Cryospheric Sea Level Rise

Konrad Steffen Cooperative Institute for Research in Environmental Sciences (CIRES) University of Colorado at Boulder

What Causes Sea Level to Change?

Cryospheric Sea Level Rise

Comparison of total volume (left), and total contribution to sea-level rise from glaciers & ice caps and the ice sheets in Greenland and Antarctica

Greenland Mass Balance

Ice Discharge (320-420 Gt/yr)

Im-Balance (50-200 Gt/yr)

GC-Net Greenland Climate Network

Air Temperatures at ETH/CU Camp 1991-2010

Mean annual air temperature increased by 4 °C since 1991 (~2 °C/decade)

Surface mass balance is negative since 1996

Greenland Total Melt Area: 1979-2010

Acceleration of Jakobshavn Isbræ triggered by warm subsurface ocean waters

David Holland, Robert Thomas, Brad de Young, Mads Ribergaard, and Bjarne Lyberth

Warm Water Intrusion

Greenland Ice Sheet Mass Balance

Compiled by M. Fahnestock for AMAP

Bedrock Topography of Antarctica

Changes in ocean circulation and ocean temperatures will produce changes in basal melting, but the magnitude of these changes is currently not modeled or predicted.

Bedrock topography for Antarctica highlighting areas below sea level (in black), fringing ice shelves (in dark grey) and areas above sea level (in rainbow colors).From *Bamber et al.* (2007)

West Antarctic ice sheet (7 m SLE) grounded below sea level on marine sediment experiencing high geothermal heat flow.

Rate of mass change during April 2002 - Feb 2009

The results depend critically on which rebound model is removed.

After removing ICE-5G rebound prediction After removing lvins&James rebound prediction

All Antarctica: -169 Gton/yr

All Antarctica: -122 Gton/yr

John Wahr, Univ. Colorado

Ice Sheet Mass Change Acceleration 1992-2010

- In 2006, the Greenland and Antarctic ice sheets experienced a combined mass loss of 475 ± 158 Gt/yr, equivalent to 1.3 ± 0.4 mm/yr sea level rise.
- Acceleration in ice sheet loss over the last 18 years was 21.9 ± 1 Gt/ yr² for Greenland and 14.5 ± 2 Gt/yr² for Antarctica, for a combined total of 36.3 ± 2 Gt/yr²
- Acceleration is 3 times larger than for mountain glaciers and ice caps (12 ± 6 Gt/yr²).

Glaciers and Ice Cap Changes since 1970

Glaciers and Ice Caps

Glaciers and Ice Caps

Currently, accumulation areas are too small, forcing glaciers to lose 27% of their volume to attain equilibrium with current climate, resulting at least 184 ± 33 mm SLR

Based on data from Dyurgerov and Meier (2005)

Rhone Glaciers 1856

Martin Funk, ETH Switzerland

Martin Funk, ETH Switzerland

Martin Funk, ETH Switzerland

Mean SLR from Greenland and Antarctica ~ 1mm/yr (2000-2010)
Mean SLR by glaciers and ice caps ~1.4 mm/yr (2000-2010)
Total cryospheric SLR 2.4 mm/yr; increasing to 2.8 mm/yr (2010)
Acceleration of ice loss from ice sheets 3 times larger than from glaciers and ice caps

