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When creating analyses of past climate, we routinely infer what the temperature anomaly (or other 
such variable) could have been in areas without measurements. The use of plentiful information from 
satellites for the last 30 years, in combination with point measurements made in situ, allows us to 
better reconstruct complete temperature fields for periods in the past when we have relatively few 
observations, using statistical techniques. Techniques such as Bayesian Principle Component 
Analysis allow us to produce a set of equally-likely realisations of the reconstructed analysis, which 
are all consistent with the available measurements, given their uncertainties. Although there was only 
one true past evolution of the climate, we don't have enough measurements to know perfectly what it 
was like. In a crossword puzzle, we try to work out words or phrases when we have a series of blank 
spaces where we should have letters. If we have few letters, the number of possible words or phrases 
consistent with those spaces is relatively large. The more letters we have, so the number of 
possibilities reduces. The situation is similar when reconstructing past histories of temperature, or 
other climate variables: the fewer measurements we have, the more uncertainty in our inferred values. 
However, as in a crossword puzzle, we also have clues to help us; here we use known statistical 
relationships between, for example, temperature anomalies in different locations. Bayesian Principle 
Component Analysis iteratively learns the statistical relationships between the variables and produces 
reconstructions of every temperature anomaly field since 1850, quickly converging on a stable set of 
relationships and reconstructed fields. It uses the information about uncertainties in the observations 
to place appropriate weight on each gridded average; weighting those values with lower uncertainties 
more highly. It also uses this information, along with knowledge of where observations are not 
available to assess the uncertainty in the reconstruction. Where few measurements are available 
and/or the field is naturally variable, the ensemble of equally-likely reconstructions diverges more than 
where there are many measurements and/or the field is naturally quiescent. Additionally, we use 
ensembles to explore uncertainties associated with adjustments applied to the measurements to 
reduce the effects of changing relative biases in time and space. Combining these with ensembles of 
reconstructions allows the generation of a "super-ensemble" which captures the sampled uncertainties 
and, importantly, also their covariances. Creating "poor man's" ensembles by blending different data 
sets also allows us to explore structural uncertainties arising from the choice of analysis technique. 
This all has benefits to applications of these analyses. For example, a dynamic reanalysis could be 
run many times (given the resources) to explore the range of uncertainties captured by the ensemble. 
It could also allow the explicit exploration of the effect of uncertainties on previously controversial 
differences between uniquely realised analyses, for example in relative trends between the east and 
west tropical Pacific over the last century. We illustrate these ideas with examples drawn from the 
development of our new surface temperature data sets and analyses.      


