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1. Introduction 
     Data assimilation in multi-scale models, such as a coupled ocean-atmosphere model and a 
global cloud-resolving atmospheric model, has a potential to improve large-scale analyses by 
assimilating small-scale observations through scale interactions. A problem is that multi-scale 
models are strongly nonlinear while most of the data assimilation methods used in geophysics 
assumes that probability density functions are nearly Gaussian. 
     Ballabrera-Poy et al. (2009) investigated the accuracy of analyses when both large- and 
small-scale variables are simultaneously assimilated with an ensemble Kalman filter by using a 
Lorenz-96 two-scale model (Lorenz, 1996). They found that assimilation of large-scale variables 
with a few small-scale variables significantly degraded the filter performance due to spurious 
correlations from sampled ensemble covariances. 
     The present study further investigated multi-scale data assimilation with Kalman filters. 
There is almost no difficulty in applying Kalman filters to numerical models which contain very 
different time scales, compared to 4-dimensional variational assimilation. 

 
2. Method 

Data assimilation experiments were conducted on a perfect model assumption with the 
Lorenz-96 two-scale model: 
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The parameter values used were 𝐾𝐾 = 36, 𝐽𝐽 = 10, 𝐹𝐹 = 10, ℎ = 1, 𝑏𝑏 = 𝑐𝑐 = 10 as in Lorenz (1996). 
The temporal and spatial scales and amplitude of 𝑌𝑌 were about a tenth of those of 𝑋𝑋 in these 
parameters. The time integrations were conducted with a time step ∆𝑑𝑑 = 0.005. 
     The assimilation methods used were a local ensemble transform Kalman filter (LETKF; 
Hunt et al., 2007) and an extended Kalman filter (EKF; Thornton and Bierman, 1980). EKF does 
not have sampling error, but has linearization error. The observational data of 𝑋𝑋 were available 
at a time interval of 10∆𝑑𝑑 at all coarse grid points with observation error standard deviation of 
unity. The impact of the temporal and spatial densities and error standard deviation of 
observations of 𝑌𝑌 on the analyses of 𝑋𝑋 were examined. The assimilation period was 40,000∆𝑑𝑑. 
 
3. Results 

Figure 1 shows the average analysis errors of 𝑋𝑋 for the latter half period of assimilation 
experiments with LETKF with 10 ensemble members. The values of multiplicative inflation factor 
and the size of local patches were optimized so that the average analysis errors of 𝑋𝑋 were 
minimized under a constraint that the local patch size of 𝑌𝑌 is a tenth of that of 𝑋𝑋. The figure 
demonstrates that if the spatial or temporal densities or accuracy of observational data of 
small-scale variables is not enough, a straightforward application of an ensemble Kalman filter 
(“with C.I.”) tends to degrade the analysis of large-scale variables. In those cases better analyses 
are obtained by not assimilating the small-scale observations (“Obs of X only”). This result is 
consistent with that of Ballabrera-Poy et al. (2009), but it is not due to sampling error, because 
similar results were obtained from LETKF experiments with larger ensemble members such as 
200 and 500. In those experiments, adaptive covariance inflation (Li et al., 2009) was used and 
local patches were not applied. Assimilation experiments with EKF with the adaptive covariance 
inflation also gave a qualitatively similar result. Those results suggest that the degradation of 
large-scale analysis is due to the Gaussian assumption of Kalman filters. 

The figure also shows the results from assimilation experiments in which the cross analysis 
increments between large- and small-scale variables were neglected at the analysis step of LETKF 
(“w/o C.I.”). Scale interactions in data assimilation were allowed only in the forecast step. If the 
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spatial and temporal densities and accuracy of observational data of small-scale variables were 
enough, the large-scale analyses were degraded compared to the previous experiments. If that was 
not the case, however, the neglect of cross analysis increments lead to better large-scale analyses 
than the analyses obtained from assimilating large-scale observational data only. 

The neglect of cross analysis increments may be easily applied to a coupled 
ocean-atmosphere model, since most of the state variables are separated into oceanic and 
atmospheric variables. On the other hand, a hierarchical approach may be necessary for a global 
cloud-resolving atmospheric model, since it is not easy to extract cumulus-scale variables from the 
state variables. In the hierarchical approach, large-scale observational data are assimilated first 
to obtain large-scale analysis. Then small-scale observational data are assimilated with the 
large-scale analysis given, and the multi-scale model is integrated in the forecast step. It was 
found from LETKF experiments with the Lorenz-96 two-scale model that this approach gave 
analyses of similar quality to those obtained by neglecting the cross analysis increments. 
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Figure 1.   RMSE of analyses of 𝑋𝑋 averaged over 20,000 time steps and all grid points from assimilation 
experiments with LETKF with 10 ensemble members. The left panel shows the impact of grid interval 
and error standard deviation of observations of 𝑌𝑌 when they are available at every time step. The right 
panel shows the impact of time interval and error standard deviation of observations of 𝑌𝑌 when they 
are available at every grid point. “C.I.” in the figure legends stands for the cross analysis increment 
between the variables of 𝑋𝑋 and 𝑌𝑌.  


