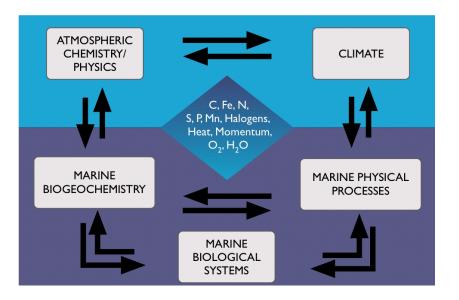
SOLAS: Connecting Sea and Sky

- The Surface Ocean Lower Atmosphere Study (SOLAS) is a multidisciplinary and global-scale research programme.
- SOLAS integrates the efforts of marine biogeochemists, physical oceanographers, atmospheric chemists, meteorologists and climatologists, covering scales from the microbial to global
- SOLAS Goal:


To achieve quantitative understanding of the key biogeochemical-physical interactions and feedbacks between the ocean and the atmosphere, and how this coupled system affects and is affected by climate and environmental change

- SOLAS is Sponsored by SCOR, IGBP, CACGP and WCRP
- IGBP Core Project
- Part of the Earth System Science Partnership

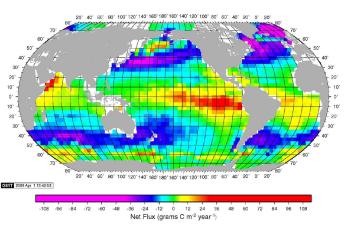
SOLAS Science

surface ocean SOISS lower atmosphere study

Brian Ward WCRP Data Advisory Council 1st Session: Surface O

- Sea-ice biogeochemistry and interactions with the atmosphere
- Ocean-derived aerosols: production, evolution and impacts
- Atmospheric control of nutrient cycling and production in the surface ocean
- Ship plumes: impacts on atmospheric chemistry, climate and nutrient supply to the oceans
- Air-sea gas fluxes at Eastern boundary upwelling and Oxygen Minimum Zone (OMZ) systems
- SOLAS Observatory and MOIN: the Minimalist OceanSITES Interdisciplinary Network

SOLAS Domain

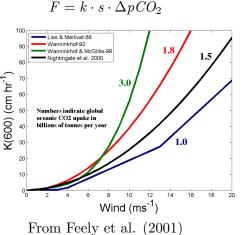

• A distinctive feature of the ocean surface and surrounding air is the progressive change in scale and progressively greater interdependence of different processes as the interface is approached

1 km	entrainment, cloud radiative processes, condensation	1 km
100 m	turbulence, precipitation, organised circulations, gas to particle conversion	100 m
10 m	larger surface waves	10 m
1 m	spray, wave/turbulence interaction	1 m
1 cm	short wind waves	1 cm
1 mm	capillary waves, foam	1 mm
0 -1 nm	MIR-SEA INTERFACE	0 -1 nm
-1 μm	film-cap thickness	-1 µm
-1 mm	radiation absorption, heat conduction, gas exchange	-1 mm
-1 m	wave breaking/wind mixing, bubbles, turbulent mixing, convective motion, Langmuir circulation	-1 m
-10 m	mixed layer, thermocline entrainment Ekman pumping, upwelling, subduction	-10 m
-1 km	deep convection	-1 km

Brian Ward WCRP Data Advisory Council 1st Session: Surface O

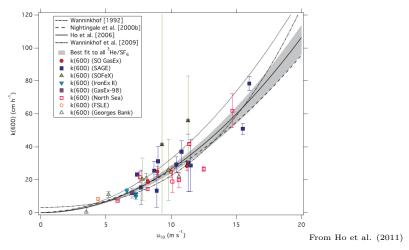
surface ocean

Quantifying CO_2 Uptake by the Ocean

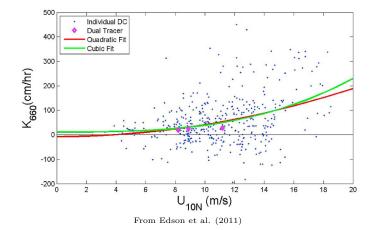


Air-sea CO_2 flux F:

$$F = ks \Delta p CO_2$$


k = transfer velocitys = solubility $\Delta p \text{CO}_2 = \text{partial}$ pressure difference between ocean and atmosphere

- Current estimates is that the oceanic uptake flux including anthropogenic CO₂ is 2.0 ± 1.0 Pg-C yr⁻¹
- The goal is to resolve air sea CO_2 fluxes to 0.2 Pg-C yr⁻¹


- Transfer velocity k is not constant, but varies with wind speed, sea state, turbulence in the surface ocean, wave breaking, whitecapping, and the presence or otherwise of surfactants and rain
- Transfer velocity k is usually parameterized with wind speed e.g. $k \propto u^a S c^{-b}$
- Parameterisations of k differ by about 50% for winds of 7 ms⁻¹ and by 100% at 15 ms⁻¹
- Direct measurements of fluxes will lead to improved models

Dual Tracer Transfer Velocity

- Dual Tracer method provides well-constrained transfer velocity data
- \bullet Other direct method for determining k is eddy covariance

Eddy Covariance Transfer Velocity

• Eddy covariance k values have many more data points but much higher scatter