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Abstract 
 

The navigation of a totally autonomous AUV is a major challenge. Most AUVs are based on low 

drift inertial navigation systems designed to sustain submerged operations for long periods of time. To 

improve the navigation estimation, we can rely either on long or on ultra short baseline acoustic 

positioning. But those processes require for one, the set up of a series of transponders, and for the other 

the assistance of a mother ship. Due to operational costs, it is desirable to reduce the amount of external 

equipment required for an AUV to operate independently. 

 

Moreover, for a glider mission, many others aspects such as energy savings, complete autonomy, payload 

constraints, have to be taken into account for the navigation estimation process.  

 

In this context, the use of underwater terrain navigation provides an enabling capability for low-cost 

navigation on underwater vehicles. The idea towards using terrain information for the purpose of 

navigation is to incorporate information provided by a priori maps into the estimation process. Thus, the 

ability to use natural features will allow a submersible body to be deployed in a large range of 

environments without the need to introduce artificial beacons or rely on acoustic tracking technology. 

 

The aim of this simulation is to implement on a glider an underwater terrain navigation algorithm using 

particle filtering.  

 

The main objective of particle filtering is to track a variable of interest as it evolves over time, typically 

with a non-Gaussian and potentially multi modal probability density function (pdf). The basis of the 

method is to construct a sample-based representation of the entire pdf, distributing weights to particles 

according to the likelihood between the depth measured at their position and the own glider’s depth 

measurement. 

 

The final objective of this feasibility study is to simulate a glider’s deployment under the Arctic using this 

method for its navigation estimation; and to find an answer to the fundamental question: “Can we use a 

terrain navigation approach for a long range under ice mission in the Arctic Ocean?” 
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 Introduction 
 

Oceans are the key element that drives our climate. In association with the atmosphere 

they constitute a real thermal machine. Men have always tried to understand and explore those 

huge basins of water as Sir Wyville Thompson on board of the Challenger expedition (1872-

1876). Nowadays we try to continue this work of understanding through data collection all over 

the world in order to establish, validate and feed our global and local oceanographic models.  

 

Data collection 
 

Oceans are the backbone of our ecosystem. Progress in understanding our climate 

depends in part on the gathering of scientific data from the oceans. Because of the distributed 

nature of ocean dynamics, data is needed over a wide temporal and spatial range. 

 

Traditional methods for gathering data include the use of surface ships, towed sleds, 

manned-submersible, fixed moorings, drifters, and bottom-mounted instrumentation. However, 

ships are expensive to operate and are limited in number and availability. Fixed moorings give 

data about only one location, while drifters cannot choose their path through the ocean. Each of 

these systems has its place in oceanographic research, but deployment, operation, and recovery 

can be expensive. In this context, autonomous platforms such as gliders overcome many of these 

difficulties and seem to be a perfect compromise.  
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Gliders 
 

The first application of underwater glider, and the inspiration for their design, has been 

oceanographic data collection. Use of gliders in a distributed fleet is part of the original vision 

for their use in oceanography. 

Gliders are unique in the AUV world, in 

that varying vehicle buoyancy creates the 

forward propulsion. Wings and control 

surfaces convert the vertical velocity into 

forward velocity so that the vehicle glides 

downward when denser than water and 

glides upward when buoyant. Gliders 

require no propeller and operate in a 

vertical saw tooth trajectory which ensures 

a high resolution in data sampling. 

 
Figure 0-1: Slocum Glider 

 

 

The Slocum Battery Glider dead reckons to waypoints, inflecting at set depths and 

altitudes based on a mission text file. As set by the mission, the Glider periodically surfaces to 

communicate data and instructions and to obtain a GPS fix for location. Any difference in dead 

reckoning and position is attributed to current and that knowledge is used on the subsequent 

segment. (source: Slocum glider user’s manual) 

 

However, given that gliders operate at a relatively low speed (about 0.3 m/s) they are 

constrained by currents, and so their underwater position estimation is neither very accurate nor 

precise. The definition of both accuracy and precision is illustrated in the figure 0-2. 

 
Figure 0-2: precision and accuracy definition 
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Underwater positioning 
 

 
Figure 0-3: Underwater positioning solutions (source www.ixsea.com) 

 
Effective localization and navigation is critical to AUV mission accomplishment. Modern 

sea navigation systems are often based on satellite information from the global positioning 

system (GPS) in order to keep high permanent position accuracy. However, the radio-frequency 

signals used in GPS cannot effectively penetrate seawater, so AUVs can only use GPS directly to 

constrain position error when they are at or very close to the surface. 

 

As a consequence, most underwater vehicle navigation is based on some form of dead 

reckoning with varying techniques to bound the error growth using external information. Dead 

reckoning is the process of using knowledge of a vehicle's motion since its last known position to 

estimate the vehicle location at any given time. 

 

But, this underwater position estimation process is burdened by drifting and position 

uncertainty growth. Even navigation systems based on sophisticated sensors, such as Inertial 

Navigation Systems (INS), require periodic reinitialization with external information to bound 

their continually growing error. 
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Terrain navigation 
 

 Terrain navigation seems to be a promising technique for the challenges encountered in 

underwater navigation. In fact, it offers the unique ability of being totally independent, and this 

in a possibly low cost way. 

Terrain navigation has been used for vehicles traveling over land. A classical application 

is the cruise missile, which updates its position periodically using stored maps between the 

launch and target sites. 

The key idea of terrain navigation lies in the comparison between measurements and a 

stored map as illustrated on figure 0-4. To make it simple, we could outline that terrain 

navigation works in the same way than our orientation sense. We know where we are by making 

comparison between what we are seeing and what is stored in our memory. 

Thanks to progress done in bathymetric data acquisition, the seafloor is now increasingly 

understood and contains interesting bathymetric features (seamounts, canyons, knolls, ridges, 

trenches, banks, rises, slopes, shoals…), which may have enough variability to support 

bathymetric navigation. 

 
Figure 0-4: Terrain navigation using sonar depth measurements (source: particle filter for underwater terrain 

navigation – R. Karlsson, F. Gustafson [18]) 
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Objective of this project 
 

The objective of this project is to see if an improvement in the glider’s underwater 

positioning using the terrain navigation principle is possible. So the idea is to combine the dead 

reckoning process already existing with the bathymetric data in order to improve the positioning 

accuracy (see figure 0-5). This improvement must take into consideration that we are operating 

gliders and thus, that the energy budget is limited. 

 
Figure 0-5: Terrain navigation principle. The AUV is measuring the depth by one sonar beam at each sampling 

event. Likely positions are positions in the map with the same depth. (Source: Terrain Navigation for Underwater 
Vehicles Using the Correlator Method - Ingemar Nygren) 

 

The project consists in the development of a simulation tool based on terrain navigation 

using particle filter. Given this simulation we are willing to test the feasibility of the Terrain 

Based Navigation Particle Filter (TBN-PF) on a long range glider’s mission, and especially 

under-ice missions in Arctic and covert military operations. This simulation will also be a tool to 

answer fundamental questions but also to test the expected accuracy on underwater positioning 

given: 

- The pinging policy 

- Specifications of navigation instruments 

- The desired trajectory 

- The current data on the area 

- The a priori bathymetric map 



 13

1  Underwater navigation 
 
In this section we would like to give 

an overview of existing underwater 

navigation technologies before 

tackling the terrain navigation. The 

figure 1-1 represents the AUV 

HUGIN, which is able to use many 

different systems of underwater 

navigation (DVL aided Inertial, 

acoustic, terrain navigation). 

 

 
Figure 1-1: Kongsberg Hugin AUV 

 

Accurate underwater navigation remains a substantial challenge to all underwater platforms. 

Both Autonomous operation in deep water and covert military operations require the AUV to 

remain submerged for long periods of time. Many navigation technologies are available for 

AUVs. Some require accurate knowledge of the vehicle state (internal navigation), and others are 

dependent on underwater communication (external navigation). Thus we can sort all those 

technologies into two distinct categories: 

 

- Internal: dead reckoning, inertial navigation 

- External: radio, acoustic and geophysical navigation 
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1.1 Internal navigation 

1.1.1 Inertial Navigation System 
 

Most of underwater vehicles rely on inertial measurement sensors to estimate their position.  

Figure 1-2 The relationship between the global 
geographical frame of reference XYZ 

 and the local horizontal frame of reference NED 
Source: P. Kaniewsky, “Integrated Positing System 

for AUV” 

 
Figure 1-3 the body frame of reference 

Source: P. Kaniewsky, “Integrated Positing System for AUV” 

An INS calculates position ( , , )zϕ λ , velocity [ ]T
NED N E DV V V V=  and attitude using high 

frequency data from an Inertial Measurement Unit (IMU). Figures 1-2 and 1-3 provide the 

coordinates framework. An IMU consists of three accelerometers and three gyros measuring 

angular rate. An INS is an integrated system of many navigation devices: 

 

IMU:  Inertial measurement unit 

EC:  Electronic compass 

DVL:  Doppler velocity log 

DS:  Depth sensor 

 

These sensors are usually integrated thanks to a Kalman filter, which performs this integration in 

a mathematically optimal way. Here, the Kalman filter is based on an error-state model and 

provides a much higher total navigation performance than the one obtained from the individual 

sensors alone. 

 

The structure of the positioning system is composed of two parts, a group of navigation devices 

and an algorithm of joint data processing as shown on figure 1-4. 
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Figure 1-4 Structure of the positioning process for an AUV – source: INTEGRATED POSITIONING SYSTEM FOR 

AUV (Piotr KANIEWSKI, Military University of Technology, Warsaw, POLAND) 
 

- The IMU provides for three components of acceleration [ ]IMU T
NED N E Da a a a= in the local 

horizontal frame, and two inclination angles (roll φ  and pitch θ ). 

- The electronic compass (EC) complements these angles with the magnetic heading of the 

vehicle Mψ . This magnetic heading has to be corrected, by subtracting from it a local magnetic 

variance Mψ∆ , and this way the true heading is calculated. 

- The Doppler velocity log (DVL) provides ideally three components of velocity relative to the 

seafloor ( , , )u v w  in the body frame. 

- The depth sensor (DS) is a water pressure meter and provides for the depth DSz  of AUV 

relative to the sea level. 

Thus, this positioning system provides for position ( , , )zϕ λ  and velocity [ ]T
NED N E DV V V V= of 

the underwater vehicle. With all those measurement devices, the position estimation process is 

almost autonomous or self sufficient. Unfortunately, given the double integration process, INS is 

also burdened by an error drift. The chapter 6 of this report tackles an implementation of an INS 

uncertainty algorithm. However we can find in literature typical ranges for performances of this 

system (table 1.1-1): 

Navigation system 
- Long term accuracy 

- DVL range 

AUV 

speed 
Error drift 

IMU stand alone   1 nautical mile/hour 

INS with a 300 kHz DVL 
0.4% of speed  

200m 
2 m/s 28.8 m/h 

INS with a 1200 kHz DVL 
0.2% of speed 

30 m 
2 m/s 14.4 m/h 

Table 1.1-1 AUVs position error drift found in literature – source: Making AUVs truly Autonomous – P. E. Hagen, 
Kongsberg Maritime/Norwegian Defense Research Establishment (FFI) [19] 
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1.1.2 Dead Reckoning Navigation 
 

Dead reckoning is the most fundamental and intuitive of all navigation systems and 

requires the least amount of observation. It simply updates the position thanks to a measured 

velocity vector. However this low cost method is burdened by a soaring position error. 

 

In the case of a glider, where place and energy budget are key limiting factors, it seems difficult 

to run a full INS positioning system. That’s why a kind of low cost position estimation process 

has been chosen in most existing coastal gliders. Thus, measurement devices that can be found 

onboard a glider are: 

- Attitude sensor measuring pitch and roll 

- Electronic compass providing the magnetic heading 

- Depth sensor 

 
Figure 1-5 Structure of the positioning process for a glider 

 

The main objective of this paper is to develop and test a simulation tool to combine this low cost 

positioning process (figure 1-5) with a terrain navigation algorithm and to examine the range of 

expected accuracy. 
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1.2 External Navigation 

1.2.1 Radio Navigation 
 

Unfortunately, due to the attenuation in sea water of Global Positioning System (GPS) radio 

waves. AUVs can not rely on radio navigation. In this context GPS can only be used when the AUV is 

surfacing in order to obtain a GPS fix and so to reinitialize the internal navigation process. 

1.2.2 Acoustic Navigation 
 

1.2.2.1 Short Baseline Navigation 
 

A hydroacoustic positioning system consists of both a 

transmitter (transducer) and a receiver (transponder). A signal 

(pulse) is sent from the mother ship’s transducer, and is 

aimed towards the AUV transponder (figure 1-6). This pulse 

activates the transponder, which responds immediately to the 

vessel transducer. 
Figure 1-6 Acoustic Navigation SBL- 

source: www.geo-marine-tech.com 

The transducer, with corresponding electronics, calculates an accurate position of the transponder relative 

to the vessel. The calculation of positioning is based on range, and on vertical and horizontal angle 

measurements, from a single multi element transducer. The system provides three-dimensional 

transponder positions relative to the vessel. In deep water, deploying and following the AUV with a 

survey vessel is the preferred method for obtaining maximum position accuracy. Product specifications 

state that the position accuracy of single measurements from the standalone HiPAP (High Precision 

Acoustic Positioning - Kongsberg) is in the order of 0.2% of the range (line of sight from the surface ship 

to the AUV). 

1.2.2.2 Long Baseline Navigation 
 

Long Baseline navigation systems use an array of acoustic 

beacons. The calculation of position is based on range 

measurements only. The AUV interrogates the LBL network, 

and uses the reply from each transponder to calculate the 

range from the AUV to the transponders, and so its position 

thanks to a least square algorithm process (figure 1-7). 

 
Figure 1-7 Long Baseline beacons’ array – 

source: Kongsberg maritime 

However, the location of these beacons must be determined in a very precise and accurate way. Thus, the 

cost in time, equipment and effort is very expensive, especially when the beacon network is significant 

and set in a fairly deep area far from shore. Moreover, the vehicle is constrained to stay within the 

acoustic range of the array. 
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1.2.3 Geophysical Navigation 
 

Given the cost of the previous underwater navigation systems, there has been an increasing 

interest in geophysical navigation systems based on the knowledge of: 

a) The earth’s gravitational field 

b) The earth’s magnetic field 

c) Bathymetry 

Those systems require a priori maps. To make it simple, both gravitational field and magnetic field 

anomalies can be viewed as beacons, and the AUV thanks to field intensity measurements estimates its 

position in this array. 

a) The Earth's gravitational field fluctuates due to local variations in topography and geology. It is 

theoretically possible to use either gravity variations or anomalies for navigation. 

 
Figure 1-8: Earth’s gravity field anomaly – correlation between bathymetry/Gravity field anomaly (source: Ensieta 

Geophysics lecture – Lalancette, Shom) 
 

b) The International Geomagnetic Reference 

Field (IGRF) is a global model of the 

geomagnetic field. It allows spot values of 

the geomagnetic field vector to be calculated 

anywhere from the Earth’s core out into 

space. The IGRF websites provides codes 

that allow computing the global magnetic 

field intensity. The figure 1-8 is the 

representation of this global magnetic field. 
 

Figure 1-9 Earth’s magnetic field intensity (nT) – IGRF 
 

c) Bathymetry is the third geophysical parameter, the terrain based navigation principles for 

underwater vehicles are discussed in papers [2], [5], [7], [9], [17]. The idea is to exploit known 

natural features of the seafloor in order to estimate the AUV position. The terrain-based 

navigation is the focus of this paper and will be developed in the following chapter. 
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2 Terrain Based Navigation 
 

2.1 Principle 
 

The terrain navigation has been developed in 1958 to bound the error drift of cruise missile 

inertial navigation system. Thanks to comparisons between measurements and pre-assigned 

trajectory, the terrain contour matching algorithm (TERCOM) of the missile was able to bring 

itself back on the right track and to reset its inertial navigation system. 

 

In theory, Terrain navigation is very simple and consists in the correlation between a pre-

obtained digital terrain model of the seafloor and bathymetric measurements from onboard 

sensors. As a result the AUV position within this Digital Terrain Model (DTM) may be 

estimated. 

It seems in fact natural to 

exploit known natural 

features to estimates the 

position. Oceans seafloor 

represents a strong source 

of information with a 

unique significant 

variability. The figure 2-1 

represents the bathymetric 

chart of the Arctic Ocean.  
Figure 2-1: IBCAO International bathymetric chart of Arctic Ocean Resolution 

2 km 
 

We can clearly outline that even if it presents abyssal plains, the Arctic seafloor also presents a 

high variability. Thus nowadays, thanks to former explorations’ legacy and given continuous 

improvements in multibeam echo sounders, oceans’ seafloor is increasingly understood, making 

the terrain navigation a promising alternative for underwater positioning. 
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2.2 Bayesian Reasoning 
 

We have to keep in mind that what we want to estimate is the position of the glider. As for 

any other position estimation process, we can not be sure of the exact position. However we can 

define a probability density function (pdf) that represents a possible area of where the glider 

could be. The Bayesian approach provides a general framework for the estimation of the state of 

the glider, This Bayesian approach is discussed in [1] and [4] and provides the framework for the 

estimation of the state of our glider. The idea is to incorporate information provided by a priori 

maps into the estimation process. By using Bayesian methods, it is possible to incorporate 

bathymetric observations into the navigation loop in order to establish the probability distribution 

of the glider’s position. 

Bayes' theorem adjusts probabilities of a hypothesis H given new evidence E in the following 
way: 

 ( | ) ( )( | )
( )

p E H p Hp H E
p E

=  (1) 

 

• H  represents a specific hypothesis 

• ( )p H  is called the prior probability of H that was inferred before new observation 

• E  is the observation or evidence 

• ( | )p E H  is called the conditional probability of seeing the evidence E if the hypothesis H happens to be 

true. It is also called a likelihood function when it is considered as a function of H for fixed E.  

• ( )p E  is called the marginal probability of E: the a priori probability of witnessing the new evidence E 

under all possible hypotheses.  

• ( | )p H E is called the posterior probability of H given E.  
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Thus the Bayesian method can be applied for terrain navigation. In our context we want to adjust 

the probability of our glider’s position given a bathymetric observation. 

 
0 1: 1

0 1:
0 1: 1

( | ) ( | , , )
( | , , )

( | , , )
k k k j j j k

k j j j k
k j j j k

p z x p x x z
p x x z

p z x z
α

α
α

= −
=

= −

=  (2) 

0 1:( | , , )k j j j kp x x zα =  is the posterior probability of the glider’s state 

( | )k kp z x  is the conditional probability, it can be seen as a likelihood function 

0 1: 1( | , , )k j j j kp x x zα = −  is the prior probability that was inferred thanks to the dead reckoning process 

0 1: 1( | , , )k j j j kp z x zα = −  is the marginal probability of the bathymetric observation 

Here, we are acting recursively given the last GPS fix position known, by first predicting the 

prior probability of kx  from the previous posterior probability of the position 1kx −  and the action 

taken kα , and then updating using the latest bathymetric observation kz  in order to obtain the 

posterior distribution of the position kx . The figure 2-2 illustrates this principle. 

 
Figure 2-2 Bayesian reasoning 
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2.3 Kalman filter 
As outlined in the previous section, the terrain navigation consists in the assimilation of an observation, 

here the depth of the glider, into the navigation process. In this context the Kalman filter could be an 

efficient computational means to estimate the state of the glider. The Kalman filter minimizes the mean of 

the squared error [13]. 

 
Figure 2-3: The Kalman filter estimates the 

glider position using a feedback control 

Measurement update equation: 

 ˆ ˆ ˆ( )k k k kx x K z Hx− −= + −  (3) 
With:   ˆkx  a posteriori state estimate 

            ˆkx−  dead reckoning estimate 
             kz  actual bathymetric measurement  
             K  gain or blending factor 
            ˆkHx−  predicted measurement 

The matrix K is chosen in order to minimize the error covariance 

 ˆ ˆ[ ] [( )( ) ]T T
k k k k k k kP E e e E x x x x= = − −  (4) 

One form of the matrix K that minimizes this error covariance is: 

 T
k

k T
k

P HK
HP H R

−

−=
+

 
(5) 

- If the measurement error covariance R is close to zero, the gain K  gives more weight to the 

residual ˆ( )k kz Hx−− , thus the bathymetric measurement kz  is increasingly trusted. 

- If the a priori estimate error covariance kP−  approaches zero, the dead reckoning state estimate has now 

a more significant weight.Thus, the Kalman filter computes an estimate of the state of a discrete-time 

controlled process that is governed by a linear stochastic difference equation. 

 1 1 1ˆ ˆk k k kx Ax Bu w−
− − −= + +  (6) 

ˆkx−  dead reckoning estimate of the state at step k  

1ˆkx − : posterior probability of the state at step 1k −  

B : control input matrix 

A : transition matrix 
1ku − : control input 

1kw − : process noise 

However, given that glider’s physical parameters evolve along the trajectory, its evolution can not be 

described by a simple linear relation, the transition matrix A  can not be constant. We have to consider a 

non linear evolution ( f : non linear function): 

 1 1 1( , , )k k k kx f x u w−
− − −=) )  (7) 

In this context, we have to use a Kalman filter that linearizes the estimation around the current estimate 

using the partial derivates of the process and measurement functions. This technique is called Extended 

Kalman Filter (EKF). However in this paper we focus on another means, the particle filter, which has a 

strong ability to describe non linear model and non-Gaussian noises. 

Time update 
Predict 

Dead reckoning 

Measurement update 
Correct 

Bathymetric measurement 
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2.4 Particle filter 

2.4.1 Principle 
The core of the particle filter is the estimation of the probability density function. The 

particle filter enables a promising solution to the combined task of navigation and tracking [18]. 

The particle filter models an unknown probability distribution by a large number of samples. 

Given sufficient particles, the distribution will provide an accurate model of the underlying 

process it is attempting to describe. In other words, the interest of the particle filter lies in the fact 

that the cloud of particles gives an estimation of the position using a discrete representation of a 

probability density function. The figure 2-4 represents the evolution of the probability density 

function using the terrain navigation particle filter. It represents the number of particle per cell of 

a grid. The grid is based on horizontal differences (∆x and ∆y) between the particle position and 

the real position. Then given the weight distribution (according to a likelihood function) and 

thanks to the re-sampling process, the cloud of particles evolves until convergence to the real 

position. 

First iteration 
Third iteration 

 
Sixth iteration 

 
Fifteenth iteration 

Figure 2-4: Probability density function (pdf) evolution (grid 20x20 Km) 
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The particle filter is also able to efficiently track multi modal and non Gaussian probability 

densities. The figure 2-5 illustrates this ability on a “sinus cardinal” bathymetry 

 
Figure 2-5: multi-modal pdf – particles are represented by red crosses 

 
The particle filter uses an ensemble of particles representing the random variable of interest. 

Each one of those particles is associated with a weight that represents the confidence on that 

particle given the bathymetric observation. Then, an estimate of the variable of interest is 

obtained by the weighted sum of all the particles. 

 

The particle filter operates in a recursive way and is made of two phases: prediction and update. 

 

 
Figure 2-6: Particle filter principle 

The prediction stage consists in the 

propagation of the particle cloud 

according to the dead reckoning 

process of the glider. It also includes 

noises from navigation sensors 

(electronic compass, attitude sensor, 

depth sensor). 

 

The update phase uses the information obtained from the single beam echo sounder to update the 

particle weights (confidence color code on the figure 2-6). At times the particles with 

infinitesimally small weights are eliminated thanks to the re-sampling process. 
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2.4.2 Prediction stage 
 

As underlined before, the prediction phase is the step when both particles and the current state of 

the glider are projected forward in time using a kinematics model. The prior 

probability 0 1: 1( | , , )k j j j kp x x zα = −  used in equation (2) has to be established. In order to perform 

this operation, we need first to establish a glider kinematics model. The figure 2-7 replaces the 

prediction step in the Bayesian context. 

 

 
Figure 2-7: prediction step in the Bayesian framework 

2.4.3 Update stage 
 
We want here to establish the likelihood function ( | )k kp z x  used in equation (2). 

The update phase occurs when 

a new bathymetric 

measurement is available. It 

consists in updating the 

weight of each particle given 

the likelihood between the 

real bathymetric measurement 

and the particle’s one. The 

figure 2-8 replaces the update 

step in the Bayesian context. 
 

Figure 2-8: update stage in the Bayesian reasoning framework 
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2.4.4 Particle re-sampling 
One of the problems that appear with the use of 

particle filters is the depletion of the population 

after a few iterations. Due to the prediction 

step, most of particles have drifted far enough 

for their weight to contribute to the pdf. The 

key point with re-sampling is to prevent high 

concentration of probability mass at a few 

particles.  
 

Figure 2-9: weight distribution without re-sampling 
 

Without this step, some weights will converge to 1 and we have a degeneracy of the particle 

filtering. In papers [1] and [3], some re-sampling methods are outlined. The figure 2-9 highlights 

what happens if we do not apply re-sampling. The idea of the re-sampling algorithm is to retrieve 

indices of “significant” particles. When the effective sample size drops below a fixed threshold, 

the particle population is resampled. In every case, the input is an array of the weights of 

particles (normalized to sum up to one) and the output is an array of indices that indicates which 

particles are going to propagate forward. The premise of the algorithm is that particles with high 

weights are going to be duplicated while the particles with small weights are going to be 

eliminated. 

2.4.5 State estimation thanks to the particle cloud 
 
In order to describe the particles’ cloud and also to find an estimation of the possible current 

position of the glider we have to compute the two first statistic moments: 

 

- Mean 
 
We saw that the likelihood function gives a weight to each particle according to the likelihood 

between the depth measured and the depth seen per each particle. In this context the estimated 

depth by the particle filter is a simple weighted sum. Equation (8) is the example on the depth. 

The mean will give an idea of the accuracy of the filter. 

 1

1

N

i i
i

PF N

i
i

w z
z

z

=

=

=
∑

∑
 

PFz : estimated depth 

iw : weight attributed to particle i 

iz : depth at particle “i” ’s location 
 

(8) 
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- Variance 
 

The variance of a random variable or distribution is the expectation, or mean, of the 

squared deviation of that variable from its expected value or mean. Thus the variance is a 

measure of the amount of variation within the values of that variable, taking into account all 

possible values and their probabilities or weightings. In other words, it describes how far values 

(position or depth seen per each particle for example) lie from the mean. 

 ( )

1 1

2 2
1 2

0

var( )

0

PF

PF
PF PF N PF

N N PF

w z z
w z z

Z z z z z z z

w z z

−⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟−⎜ ⎟⎜ ⎟= − − −
⎜ ⎟⎜ ⎟
⎜ ⎟⎜ ⎟

−⎝ ⎠⎝ ⎠

K
O M

 
(9) 

Thanks to those two statistics moments we are able to describe the particles’ cloud distribution 

and so to establish the uncertainty on the estimated position. The figure 2-10 illustrates the 

evolution of uncertainty ellipse on particle filter estimated position. We can also easily imagine 

to give an uncertainty ellipsoid on estimated position. 

 
Figure 2-10: Particle filter – 2D uncertainty ellipse on positioning 

 

The figure 2-11 illustrates the evolution of the 

uncertainty ellipsoid we have with the use of 

the TBN-PF algorithm. We can clearly see an 

improvement in the confidence we have on the 

estimated position with the increasing number 

of observation. We can notice that thanks to 

the accuracy of the pressure sensor, the vertical 

uncertainty beside can be significantly reduced.
 

Figure 2-11: TBN-PF uncertainty ellipsoid of estimated 
position 
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3 Terrain Based Navigation Particle Filter algorithm (TBN-
PF) 

3.1 Particle Filter implementation 

3.1.1 Prediction step 
 
This section defines the simple kinematics model used to propagate forward in time the state of 

both glider and particles. 

3.1.1.1 Glider’s dynamic 
In situ, navigation sensors provide all the data needed. Those sensors are for example: 

- Single beam echo sounder 

- Speed sensor 

- Pressure sensor 

- Magnetic compass, … 

But here, in the context of a simulation we have to provide data to the filter, thus we have to 

create a trajectory of reference. This trajectory of reference will contain information such as (for 

each time integration step): 

- Pitch angle 

- Heading 

- Position 

- Time 

Thanks to this data we are able to generate “virtual noisy” measurements that the glider is going 

to sample. Virtual measurements such as: 

- Glider’s instantaneous speed (used for the dead reckoning process) 

- Bathymetry 

In order to create this upstream desired trajectory, the user defines: 

1- Waypoints location: waypoints must be 
loaded in latitude/longitude decimal 

.

2- If he wants the glider to surface at each waypoint 
 

 
3- The pitch angle of diving and climbing 

 

4- The diving and climbing target depths 
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5- The pinging policy 

 
All those simulation parameters will allow to 

define the desired trajectory. 

Red dots on the figure 3-1 represent here 

bathymetric observations. 
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Figure 3-1: generation of the reference trajectory 
 

 

3.1.1.2 Glider’s navigation estimation model 
 

Being able to generate virtual measurements, we can now define the dead reckoning process. 

Central for all navigation and tracking applications is the motion model to which various kinds 

of filters can be applied. Models which are linear in the state dynamics and non-linear in the 

measurements are considered: 

 1 ( , , )
( )

k k k k k

k k k k

X f X u w
z h X v

+ =

= +  
(10) 

kX  : state vector 

ku   : measured input 
kw  : process noise 

kz   : observation 

kv   : measurement error 

kf   : linear function 

 

The application considered in this work is the estimation of the vehicle horizontal position 

subjected to a current field. A simple model that is suitable in this case is a two dimensional 

horizontal plane kinematics model fed by a two dimensional current field averaged along the 

depth. The model parameters include also the vehicle headingθ , the pitchϕ  and the vertical 

velocity zV  [15]. In our case, if we consider a simple dynamic model based either on a constant 

speed during each integration time step or a speed measurement: 



 30

 
Figure 3-2: Glider evolution 

 
The glider evolves in the vertical plane along a yo-yo segment (descending or ascending) and in 

absence of currents navigates with a pitch angle ϕ  and a constant vertical velocity zV  which is a 

nominal parameter of the glider’s specification (see figure 3-2). The discrete state space equation 

estimates the ( , )k kx y  position of the glider at the thk time instant, knowing the position 

1 1( , )k kx y− − , the horizontal plane velocity module , 1H kV − , the glider heading angle 1kθ −  at the 

( 1)thk −  time instant and the current components 1 1 1 1( ( , ), ( , ))k k k ku x y v x y− − − −  at the previous 

location is given by the following equations: 

 

 
1 1 , 1 1 1 1( ( , ) )k k k x k k k kx x T x U u x y w− − − − − −= + ∆ + + +&  (11) 

 1 1 , 1 1 1 1( ( , ) )k k k y k k k ky y T y U v x y w− − − − − −= + ∆ + + +&  (12) 

 

where  1kU −  refers to the command law (set to 0 in the glider’s case), 1kw −  stands for the noise on 

speed measurement and T∆  is the integration time step. 

 

We can also define speed. We consider here that without measurements we keep the same speed 

as the previous step. 

1 1

1 1

k k k speed k

k k k speed k

x x or x measured w

y y or y measured w
− −

− −

= = +

= = +

& & &

& & &

 

1 , 1 1

1 , 1 1
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sin( )
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θ
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=

=
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3.1.1.3 Algorithm implementation  
 
The state vector to be estimated using particle filter is ( )TX x x y y= & &  and contains both 

positions and velocities in the horizontal plane. 

The state dynamics can be modeled as: 

1 (0, )u
k k k kX F X G U N Q+ = + +    with 

cov( ) ( ( ) )T
k k k k k kQ G w G w G w= = Ε  

( 1 1)T
kG T T= ∆ ∆  

(13) 

writing this model equation in matrix form, we obtain:  
2

2
2

1

0 0 01 0 0
0 00 1 0 0 1

( . )
00 0 1 0 0

0 0 0 1 0 0 1

x
k

yk k

x T x T T
Vx x u T

chol w
y T y T T

Vy y v T+

⎛ ⎞⎛ ⎞∆ ∆ ∆⎛ ⎞ ⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ∆+ ∆⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟= + + ⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟∆ ∆ ∆
⎜ ⎟⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟ ⎜ ⎟∆+ ∆⎝ ⎠ ⎝ ⎠⎝ ⎠ ⎝ ⎠ ⎝ ⎠

& &

& &

 

chol refers to Cholesky factorization, kw stands for a the noise on the speed measurement, here 

represented by a normal distribution N(0,1), (u,v) are the components of the current field at the 

“right” location,  and ( , )x yV V∆ ∆  stands for the command law to apply to reach a point. 

Process noise implementation: (0, )N Q   

We used here the normal distribution centered on zero. The graph of the associated probability 

density function is bell-shaped, with a peak at the mean. 
2

2
( )

2
2

1( )
2

x x

f x e σ

πσ

−
−

=  

Where x  and σ2 are the mean and the 

variance of the distribution. -5 -4 -3 -2 -1 0 1 2 3 4 5
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The figure 3-3 illustrates the iterative dynamic model implementation (equation 11 and 12) and 

the current influence on glider’s trajectory. 
Ligurian sea - current amplitude/direction - Super Ensemble - 200m mean
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Figure 3-3: taking current into account– desired trajectory (red) – real trajectory followed (blue) 
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The assumption we are making here is that the glider is not able to assimilate the current in its 

dead reckoning process (approximately, there are no current’s shear which come to modify both 

pitch and heading of the glider). In other words we can consider the current as a “conveyor” on 

which the glider is moving.  

Thus while the glider believes to follow the reference trajectory (green trajectory), in facts it is 

constrained by currents and follows the black trajectory of the figure 3-4. 

 
Figure 3-4: 3D view of the glider’s trajectory - Desired trajectory (green) – Real trajectory followed 

(black) 
 

Unfortunately due to a limited energy budget, we can not get a bathymetric measurement at each 

time step. Thus, given that the prediction phase occurs between two observations, it can enclose 

many time steps. The figure 3-5 spells out the particle filter principle on the trajectory. 

 
Figure 3-5: Prediction / Update sequence on a glider trajectory – pinging policy of one ping every 3 dive. 
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3.1.2 Update step 
 
The update step is responsible for the “feedback”, in other words this step manages to 

incorporate a new measurement into the a priori estimation in order to improve the position 

estimation. As underlined in section 2.4.3 it consists in updating the weight of each particle given 

the likelihood between the real bathymetric measurement and the particle’s one. 

3.1.2.1 Likelihood function 
 
The key element of the update phase is the determination of the likelihood function. This 

mathematical function must represent the conditional probability ( | )k kp z x  used in the Bayesian 

framework equation (2). More the depth seen by a particle is close to the real bathymetric 

observation and more the weight will be significant. 

 

2

2
( )
2.1( | ) .

2 .
bathy

Z Zi

k k
bathy

p z x e
σ

π σ

− −

= (14) 

iz : depth seen by the particle i given its position 
Z : bathymetric observation 

bathyσ : uncertainty on depth measurement 

 
Figure 3-6: likelihood function shape – function of uncertainty 

 
This likelihood function manages the weight distribution of particles given the confidence 

bathyσ we have in the bathymetric measurement Z . This function leads the convergence of the 

filter attributing an appropriate weight to each particle. The figure 3-6 highlights that more we 
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are confident in our measurement more the shape of the function will be sharp. Figures 3-7 and 

3-8 also illustrate this idea on a hill. 

Figure 3-7 Bathymetry as a hill from 3000m to 500m 
deep  

Figure 3-8: thinning of the likelihood function thanks to 
the confidence’s improvement 

 

Thus, the uncertainty on depth measurement bathyσ  is crucial because it controls the shape of the 
likelihood function, and so the convergence process of the filter. 
 

3.1.2.2 Depth measurement uncertainty bathyσ  
 

Measurement’s noises act “two” times along the algorithm, on the one hand for the depth 

measurement itself and on the other hand during the weight attribution to particles where we 

have to give a confidence to the current measurement. 

The acoustic wave path plays a significant role in the accuracy of depth’s determination since the 

acoustic wave is subject to ray bending, transmission losses, ambient noise along its course. In 

this section, we would like to correlate this measurement uncertainty with the depth. 

The figure 3-9 illustrates the 

“tolerated” variance on depth 

measurements sampled during a 

bathymetric survey. Those tolerated 

variances are obtained thanks to the 

S44 International Hydrographic 

Organization (IHO) publication 

source: 

 http://www.iho-

ohi.net/iho_pubs/IHO_Download.ht. 
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Figure 3-9: IHO S44 tolerated uncertainties – legend applied for both 

figures 
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As far as our application is concerned we don’t need to reach such accuracy, anyway this 

publication provides us an idea of the expected accuracy on depth measurement we can have 

using a sounder. 

Bathymetric measurement uncertainty with a single beam echo sounder 

As for any kind of measure, we can’t be sure at 

100% that the depth we are sampling is the “real” 

depth. Each measurement has its uncertainty 

depending on the sounder itself, the depth, ambient 

noise, sound velocity profile… The figure 3-10 

illustrates what we understand by the term 

“uncertainty”.  
Figure 3-10: measurement uncertainty example 

 
The S44 provides a tolerated 

uncertainty (Total Vertical 

Uncertainty) function of the 

depth: 

 
2 21 1 (0.023 )

2bathyTVU zσ = +  

 

The figure 3-11 is the 

implementation of this vertical 

uncertainty  
Figure 3-11: Glider’s depth measurement with addition of an uncertainty 

 

However, due to the beam footprint we have also a horizontal uncertainty that can lead to a 

vertical uncertainty. The figure 3-12 illustrates this idea: 

  
Figure 3-12: low vertical uncertainty due to the beam footprint - high vertical uncertainty due to the beam footprint 

 
The idea consists in saying that if we are pinging on an almost flat area, even if the footprint is “quite big” 

we are almost confident on the depth measurement. However, if we are pinging on an area that is not 
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“smooth”, we must consider an increasing measurement noise. Given this consideration, we have now to 

link the horizontal uncertainty with the gradient chart of the area in order to generate a “new” vertical 

uncertainty. According to the S44 order 2, the horizontal uncertainty is defined as: 
1 (20 0.1 )
2bathyTHU zσ = +

 
The bathymetric gradient map, which highlights rough areas, is defined as: 

2 2( ) ( )map
z zgradient
x y

δ δ
δ δ

= +  

Figures 3-13 and 3-14 outline the link between the bathymetric and gradient chart on the same 

area (Ligurian Sea). 

Easting (m)

N
or

th
in

g 
(m

)

Terrain Navigation - Ligurian sea

 

 

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2

x 105

4.8

4.82

4.84

4.86

4.88

4.9

4.92

x 106

Bathymetry (m)
-2500 -2000 -1500 -1000 -500

Figure 3-13: bathymetric chart 

Easting (m)

N
or

th
in

g 
(m

)

Terrain Navigation - Ligurian sea

 

 

4.4 4.6 4.8 5 5.2 5.4 5.6 5.8 6 6.2

x 10
5

4.8

4.82

4.84

4.86

4.88

4.9

4.92

x 10
6

b th t i di t
0.05 0.1 0.15 0.2 0.25 0.3 0.35  

Figure 3-14: Gradient chart 

In this context we are now able to define the total measurement uncertainty as: 

max( , . )bathy bathyTVU bathyTHU mapgradientσ σ σ=  

The figure 3-15 illustrates contributions of both TVU and THU on the total measurement 

uncertainty: 

 
Figure 3-15: Total Vertical Uncertainty and Total Horizontal Uncertainty contributions 
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3.1.2.3 Weight distribution illustration 

Examining the likelihood function, weight 

distribution is more accurate when the 

confidence on bathymetric measurement is 

high (small 2
bathyσ ). This idea is illustrated 

on the following example.  
Figure 3-16: DTM to test the weight distribution 

 

The figure 3-17 highlights the idea that with a weak confidence on depth measurement, the shape 

of the likelihood function has been smoothed. This smoothing of the likelihood function really 

handicaps the weight distribution as the particle cloud illustrates it. 

 
Figure 3-17: particle cloud on a “cubic” bathymetry – low confidence on measurements 

 

But now if we trust our depth measurements, we can observe a much more coherent an accurate 

weight distribution as illustrated on figure 3-18. Thanks to the likelihood function, particles have 

now a weight that stands for the confidence we have in it.  

 
Figure 3-18: particle cloud on a “cubic” bathymetry- high confidence on measurements 
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3.2 Outcome: Simulation principle 
- Generation of a reference 

trajectory with specified waypoints 

and pitch angle. As seen in the 

section 3.3.1.1, the user also 

defines the pinging policy (for 

example 1 ping every 3 dives on 

the figure 3-21) and if he wants the 

glider to go back to the surface at 

each waypoint. 
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Figure 3-19: desired glider’s trajectory 

- The algorithm retrieves parameters from this trajectory of reference: 

o Instantaneous pitch and heading angles 

o Indices of bathymetric observations (red dots of the figure above) 

o Indices of surface behavior 

- Generation of a global dead reckoning trajectory with “virtual” speed measurements every N seconds, 

“virtual” pitch and heading angles. This dead reckoning process is not able to detect the sea current and 

leads both glider and particles. 

- Generation of a trajectory constrained by currents. This trajectory will provide depth measurements that 

feed the particle filter. 

 
Figure 3-20: Trajectories used for the simulation 

 

- blue line: desired trajectory 

- green line: Dead reckoning estimation 

- black line: trajectory constrained by currents 

- red cones: current 
 

- The glider Dead reckons during the first dive from the last GPS fix to the first bathymetric observation 

- The particle filter is applied on the whole underwater 

cycle, with a sequence of prediction/update. 

• From the last dead reckoning position 

• Glider’s dynamic is applied to particles 

between two consecutive depth measurements 

(blue step on the figure above) 
 

- Finally, the glider dead reckons to the surface waypoint. 
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4  TBN-PF parameters sensitivity and simulation results 

4.1 Simulation Framework 

4.1.1 Bathymetric chart 
Bathymetric navigation depends on the availability of a sufficiently accurate map. Two 

different possible deployment areas have been considered: the Ligurian Sea and the Arctic 

Ocean. 

4.1.1.1 Ligurian Sea 

 
Figure 4-1: Bathymetric data localization Figure 4-2: Ligurian Sea bathymetry (resolution 

700x1000 m) – source: NURC - N.A.TO. 
 

The algorithm works in Universal Transverse Mercator (UTM) coordinates, see annex 1 for 
coordinates conversion principle. 

4.1.1.2 Arctic Ocean 

The bathymetric chart of the Arctic Ocean 

has been provided by the International 

Bathymetric Chart of the Arctic Ocean 

(IBCAO). The IBCAO pieces together data 

from the following four archives: 
1. the US National Geophysical Data Center 

2. the US Naval Research Laboratory 

3. the Canadian Hydrographic Service 

4. the Royal Danish Administration of Navigation and 

Hydrography 
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Figure 4-3: Bathymetric chart of Arctic Ocean – 

resolution 2km – stereographic coordinates  
Source: http://www.ngdc.noaa.gov/mgg/bathymetry/arctic/ 

 

The algorithm works in stereographic coordinates, see annex 1 for coordinates conversion 
principle. 
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4.1.2 Current data 
Considering that a glider evolves at a low speed, it is strongly constrained by currents. This 

simulation tool includes a current data to be as close as the real environment as possible. 

4.1.2.1 Ligurian sea current 
 

Current data used here comes from the Super Ensemble 

method based on 3 different models (Mercator, 

Mediterranean Ocean Forecasting System, Navy 

Coastal Ocean Model). This current data is a mean over 

4 days (September 2008), and represents the average 

current over the first 200 meters. 
 

Figure 4-4: Ligurian sea current – data localization 
 

Remark: Super Ensemble method – source: A review of recent super-ensemble multi-model 
challenges (Michel Rixen, Baptiste Mourre, Luc Vandenbulcke and Fabian Lenartz) 
 

To improve forecast skills, data assimilation is generally used to integrate information from 

satellite and in-situ measurements into the forecasting system. Observations of the ocean surface are 

routinely provided by Sea Surface Temperature (SST) and Sea Surface Height (SSH) operational 

satellites. High-frequency coastal radars also measure coastal surface currents in an increasing number 

of littoral regions. Based on the idea that different models may have different skills in reproducing the 

ocean state, and these skills probably evolve in time due to the temporal variability of coastal ocean 

dynamics, multi-model fusion methods have been developed with the aim to improve our ocean forecast 

skill. One of such method, known as Super Ensemble (SE), produces an optimal weighted model 

combination which minimizes the mismatch with observations over a specified learning period. This 

optimal combination is then used to produce an optimal ocean forecast. 
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Figure 4-5: Ligurian Sea current – mean 23-26 
September 2008 

 
Figure 4-6: Ligurian sea current 3D visualization (using 

matlab coneplot and slice function) 
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4.1.2.2 Arctic Ocean circulation 
The Arctic Ocean is a semi enclosed sea, constrained 

by land except for a few connections which establish 

a link to the Atlantic and Pacific Oceans [14]. These 

connections are: 

- the narrow and shallow Bering Strait (0.8 
Sverdrups) 
- the narrow but deep Fram Strait (1-2 Sv) 
- the broad and shallow Barents Sea (2.2 Sv) 
- the small but numerous pathways that make up the 
Canadian Archipelago. 
1 Sverdrup = 6 3 110 .m s−  
Amazon River debit = 0.2 Sv 

 
Figure 4-7: Arctic bathymetry - 

International Bathymetric Chart of the 
Arctic Ocean (IBCAO) 

 

Although the Arctic occupies 1.5% of the world’s ocean surface area, it receives 10% of the river 

runoff. This large amount of fresh water flux caps the surface of the Arctic with a layer of 

relatively fresh water which allows the water in the shallow mixed layer to cool to the freezing 

point. 

 

One third of the Arctic is composed of shallow Eurasian seas (shallower than 200m deep). New 

ice is usually formed is usually formed in these shallow seas when wind pushes old ice offshore 

to expose surface water to freezing conditions. In the interior, the large Canadian and Eurasian 

basins, both reach depths of over 4000 meters. They are separated by the Lomonosov Ridge that 

transects the Arctic from Greenland to Russia, passing near the North Pole. 

 

Bathymetry is thought to have a large impact on the Arctic circulation. At the shelf break, a rim 

current travels around the Arctic in a cyclonic direction. At the ridges which transect the interior 

Arctic, relatively large currents (compared to the basin interiors) have been inferred from the 

measurements. The deep basins are quiet and sheltered because of minimal of deep convection in 

the Arctic (aside from a small amount of dense water production from polynyas which are areas 

of open water surrounded by sea ice). The Canadian Basin is isolated enough so that geothermal 

heating from the ocean bottom is an important factor for deep mixing [14]. 

 

Water masses entering the Arctic from the Pacific and Atlantic have distinct salinity, 

temperature, and oxygen levels. Those paramaters can be measured to track its progress 
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throughout the Arctic. The surface waters of the Arctic are relatively cold (below 0°C) and fresh 

(30-32 psu) compared to Atlantic water (salinity of 35 and temperature greater than 0°C). The 

water entering from the Atlantic salty enough so that upon entering the Arctic, the warm water 

mass counter-intuitively sinks below the cold, fresh surface layer of the Arctic. 

 

The end result is an easily tracked warm maximum 

from about 200m to 800m which is called the 

Atlantic layer (see figure 4-9). After entering the 

Arctic through the Fram Strait (east of Greenland) 

and Barents Sea, the Atlantic layer travels 

cyclonically around the Arctic and eventually exits 

back through the Fram Strait. Temperature, salinity 

and current intensity charts provided by the Mercator 

model illustrate this statement. 

 
Figure 4-8: Schematic representation of the 

temperature and salinity structure of the upper Arctic 
Ocean 

At this time, the simulation uses a “virtual” current (figure 4-10) on the area in lack of a real 

current forecast model of this area.    
p
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Figure 4-9: Arctic current used in the simulation 

 

Nonetheless, the figure 4-11 highlights the diving entrance of the “warm” north Atlantic water 

mass, below the cold Arctic water, and resulting in a cyclonic circulation along the border of the 

Eurasian basin. The figure 4-12 also supports the idea of the cyclonic circulation of a warm and 

salty North Atlantic water mass below a fresh and cold surface layer. When the Atlantic layer 

encounters one of the ridges that bisect the Arctic, the current then appears to split with one 

branch following the bathymetry into the interior and another following the shelf break around 

the rim towards the Canada Basin. 
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Figure 4-10: Arctic Ocean Temperature - Mercator Ocean 
model ¼ deg resolution – June 2010 

-Surface 
-100m 
-300m 

Figure 4-11: Arctic Ocean Salinity - Mercator Ocean 
model ¼ deg resolution – June 2010 

-Surface 
-100m 
-300m 
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4.2 Influence of bathymetry on positioning accuracy 
 

Seafloor elevation maps represent a strong source of information that can be used to improve the 

localization process. Given sufficient information in the terrain structure, observations of terrain 

elevation provide an external observation of the likely positon of the vehicle. In this context, we 

should keep in mind that the bathymetric map is the key element that leads the accuracy of the 

terrain navigation particle filter. 

We want to outline here the influence of the sea floor on the positioning accuracy. This is an 

“empirical study”, but it can give an idea of improvement that can be done in trajectory planning. 

Consequently, some missions may be more successful than others because they may loch more 

easily to suitable features. 

Simulation 1 
- smooth sea floor  

- trajectory perpendicular to isobaths 

- 1 ping per dive / pinging every 2 dive 

- Diving target depth 200m 

- Climbing target depth 20m 

The figure 4-13 illustrates the trajectory 

used 
 

Figure 4-12:  trajectory perpendicular to isobaths 

 
Figure 4-13: particle filter trajectory (magenta) is unable to follow the real 

trajectory 

Variations in terrain 

elevation are not 

significant enough to 

allow convergence of 

the filter. The cloud of 

particle is just able to 

follow the trend of the 

slope (see figure 4-14). 
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Simulation 2 
 
- smooth sea floor 

- trajectory parallel to isobaths 

- 1 ping per dive / pinging every 2 dive 

- Diving target depth 200m 

- Climbing target depth 20m  
Figure 4-14: trajectory parrallel to isobaths 

 
Figure 4-15: particle filter trajectory (magenta) is now roughly able to follow 

the real trajectory 

We can observe a better 

accuracy in positioning when 

the trajectory is parallel to 

isobaths (see figure 4-16). 

Simulation 3 
 
- rough sea floor 

- 1 ping per dive / pinging every 2 dive 

- Diving target depth 200m 

- Climbing target depth 20m 
 

Figure 4-16: trajectory over a rough sea floor 

 
Figure 4-17: particle filter trajectory (magenta) is now able to follow the real 

trajectory 

The unique variability in the 

seafloor elevation now 

allows the particle filter to 

find its position in an 

accurate and precise way 

(see figure 4-18). 
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The figure 4-19 defines how we interpret the accuracy of the terrain navigation particle filer. It 

can be defined as the distance between the particle filter position estimation (magenta trajectory 

with uncertainty ellipses) and the position where the depth has been sampled (black trajectory).  

 
Figure 4-18: TBN-PF navigation accuracy definition 

According to the above principle, the 

figure 4-20 illustrates the filter 

convergence for those three 

simulations according to the 

bathymetric observation number. 

As expected, the best terrain condition 

is characterized by a rough bottom 

with a glider trajectory that evolves 

parallel to isobaths. 
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smooth sea floor - trajectory ⊥ isobaths
smooth sea floor - trajectory // isobaths
rough sea floor - trajectory ⊥ isobaths
rough sea floor - trajectory // isobaths

Figure 4-19: Particle filter results – distance between real and 
estimated positions 

  

 

smooth sea floor - 

trajectory 

perpendicular to 

isobaths 

smooth sea floor - 

trajectory parallel 

to isobaths 

rough sea floor 

perpendicular to 

isobaths 

rough sea floor 

parallel to isobaths 

mean 32 169 m 4 927 m 738 m 430 m 

STD 7 851m 5 778 m 496 m 287 m 

Table 4.2-1: Filter accuracy from the 10th iteration (bathymetric observation) to the end 
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Influence of a ridge on the navigation accuracy 
 

Here we want to see the influence of the Lomonosov ridge (figure 4-9) on a possible 

improvement in positioning accuracy. We have no true values of current, but given a pinging 

policy and a trajectory scheme (figure 4-22), we can have an idea of the positioning accuracy 

gain (results on figures 4-11 and 4-12). 

 

 
Figure 4-20: Lomonosov ridge 

 
Figure 4-21: trajectory used to test the influence of a 

ridge 

Figure 4-22: Influence of a ridge on the particle filter 
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Figure 4-23: Filter’s results – the green dotted line 
represents the uncertainty interval at 95% 

 

This simulation clearly highlights the need to have an area of the seafloor with unique terrain 

signatures (figure 4-23). It also highlights that a stronger importance is given to the dead 

reckoning process when the bathymetric measurement uncertainty is significant. 

Bathymetric map used 
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Trajectory optimization 

 

The paper titled “Planification for terrain-aided navigation” (S. Paris J-P. Lecadre, 

IRISA [6]) tackles the trajectory optimization issue. The path optimization problem is equivalent 

to finding the best decision sequence maximizing an auxiliary convex cost function. A decision 

is assimilated to an elementary move of the glider between two points of the map. The cost 

function tends to represent as close as possible the terrain variation information collected during 

the mobile motion, in other words it measures the terrain elevation variations. 

Figure 4-24: trajectory optimization principle – Markov decision process 
 

On figure 4-25, we want to find which one of those decisions is going to maximize the cost 

function. It can be reminded that the cost function measures the terrain elevation variation. For 

our example, the decision that would be taken is 1. 

 

However, in the case of a glider mission, where energy is a limiting factor, this kind of “dynamic 

controlled” trajectory seems difficult to apply. In fact, glider evolves at a low speed with no 

possibility to wrestle against the current. 

 



 49

Application 
 

In this section we run two simulations. Those two Arctic missions have the same start and 

end point, but follow a different trajectory to reach the final waypoint. One of those missions 

tries to stay above a rough seafloor while the other one does not care of the nature terrain 

elevation evolution (see figures 4-26). To make a relevant comparison, we have to remove the 

influence of the current. 

Figure 4-25: Trajectory followed to test the influence of bathymetry (starting point: Fram Strait) – The white 
trajectory tries to stay above a rough seafloor – The magenta trajectory just tries to cross the Arctic 

 
The figure 4-27 clearly illustrates the influence of the terrain elevation trend on the positioning 

accuracy. Due to the pinging policy, which consists of one ping every 10 dive, we observe many 

spikes. Nonetheless the positioning accuracy is clearly improved when the glider flies above a 

rough sea floor. The two main red peaks appear when the glider has to cross the two deep sea 

basins (see the magenta trajectory). 
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Figure 4-26: Expected range of accuracy given the pinging policy and the trajectory followed – distance expressed 

in meters 
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4.3 Influence of the number of particles 

The number of particles must have an 

influence on the computation time needed 

to run the filter. Here, we want to examine 

the influence of particles number on the 

navigation accuracy. Various simulations 

have been run with different number of 

particles (1000 - 10000 – 25000 – 50000). 

Figure 4-27: Trajectory used for comparison 
 

First simulation: 1000 particles 

- 1 ping per dive 

- Pinging every dive 

- Dive depth target = 200m 

- Climb depth target = 20m 

 

Time needed for  one iteration of PF: 1.8 ms 

particles propagation: 62.12ms

likelihood: 81.05ms

part moment: 45.20ms

resampling: 101.54ms

Elapsed time on particle filtering 289.90ms

 
  
Second simulation: 10000 particles 

- 1 ping per dive 

- Pinging every dive 

- Dive depth target = 200m 

- Climb depth target = 20m 

 

Time needed for one iteration of PF: 15.6 ms 

particles propagation: 619.97ms

likelihood: 651.19ms

part moment: 415.18ms

resampling: 826.19ms

Elapsed time on particle filtering 2512.52ms
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Third simulation: 25000 particles 

- 1 ping per dive 

- Pinging every dive 

- Dive depth target = 200m 

- Climb depth target = 20m 

 

Time needed for one iteration of PF: 38.8 ms 

particles propagation: 1609.04ms

likelihood: 1613.34ms
part moment: 1052.74ms

resampling: 1972.71ms

Elapsed time on particle filtering 6247.82ms

 
  
Fourth simulation: 50 000 particles 

- 1 ping per dive 

- Pinging every dive 

- Dive depth target = 200m 

- Climb depth target = 20m 

 

Time needed for one iteration of PF: 81.2 ms 

particles propagation: 3491.21ms

likelihood: 3251.59ms part moment: 2200.70ms

resampling: 4121.94ms

Elapsed time on particle filtering 13065.44ms

 
 
Outcome 
 
If a small number of particles is used, 

“fake targets” appear or better said some 

loose in navigation tracking (see spikes 

around 80 hours on figure 4-29). The 

particle cloud is not able to cover a wide 

area, and so the particle filter can be 

stuck in a false track. Thus, except some 

computation time saving there is no 

improvement done by reducing the 

number of particles.  0 20 40 60 80 100 120 140
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Figure 4-28: Distance between real and estimated position 
 

Moreover, computation time evolves linearly with the number of particles. 
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4.4 Influence of pinging policy on positioning accuracy 
 

In this section we would like to see the influence of the pinging policy on the positioning 

accuracy. In fact, one of the key parameters that constrains the duration of a glider mission is the 

energy consumption of each component. Given that broadcasting a ping requires energy, a 

tradeoff between the desired number of pings and the willing accuracy has to be done. 

 

The particle filter needs observations, however this data has a cost. For example if we 

consider the Kongsberg EA600 single beam echo sounder, each pulse (12 kHz – 16ms length) 

has a cost of 32 Joules. 

12J Energy delivered by the flash of a camera (capacitor 220 uF, 330 v) 

90J Kinetic energy of a tennis ball( masse 58g ) at 200 km/h. 

Table: Energy ranges in everyday life 

To see the influence of the pinging policy, different simulations with different broadcasting 

policies are being run. 

 
Figure 4-29: Trajectory used for comparison 
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Simulation 1 
 

- 3 pings per dive 

- Pinging every dive 

- Dive depth target = 200m 

- Climb depth target = 20m  

 

 
Figure 4-30: results of particle filtering – simulation 1 

 

Simulation 2 
 

- 1 ping per dive 

- Pinging every dive 

- Dive depth target = 200m 

- Climb depth target = 20m  
 

 

Figure 4-31: results of particle filtering – simulation 2 
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Simulation 3 
 

- 3 ping per dive 

- Pinging every 5 dive 

- Dive depth target = 200m 

- Climb depth target = 20m  

 

Figure 4-32 : results of particle filtering – simulation 3 
 

Simulation 4 
 

- 1 ping per dive 

- Pinging every 5 dive 

- Dive depth target = 200m 

- Climb depth target = 20m  

 

Figure 4-33: results of particle filtering – simulation 4
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Conclusion 

 
Figure 4-34: global trend of pinging policy influence - evolution according to the dead reckoning with high 

uncertainty on depth measurements 
 

The figure 4-35 illustrates the behavior of the navigation accuracy according to the number of 

depth measurements fed to the particle filter. 
 

Some key ideas can be outlined 

- Obviously the convergence in time of the filter is faster when the number of depth measurement 

increases. However it requires much more depth measurements to converge, in fact due to the very low 

speed of the glider, depth is sampled almost at the same position.  

 
Figure 4-35: uncertainty increasing with depth 

- When the glider is over a very deep area, the 

uncertainty on depth measurements increases. 

Thus, if this uncertainty increases, the shape of 

the likelihood function becomes smoother and 

so the weight distribution is done in a less 

sharp way (see figure 4-37). 

 
 

Figure 4-36: evolution of the likelihood function – shape’s 
smoothing around the 20th iteration due to deep water 

 
High uncertainty on depth measurement 
=> Higher confidence given to dead 
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Consequently, more weight is given to the dead reckoning than to measurement. This trend can 

be observed on the figure 4-35 between 50 and 80 hours when the distance between estimated 

and real position is soaring following the same trend than the dead reckoning process. 
 

- After convergence, the filter does not need a lot of depth measurements to keep an “acceptable” 

accuracy (based here on the user requirements). 

Simulation # Pinging policy 
Time 

needed to 
"converge" 

Number of pings 
until 

convergence 

Mean distance 
to real position 

Standard 
deviation 

distance to real 
position 

simulation 1 3 pings / every dive 5 hours 21 892 m 968 m 

simulation 2 1 ping / every dive 10 hours 14 1185 m 1474 m 

simulation 3 3 pings / every 5 dive 23 hours 21 2425 m 2344 m 

simulation 4 1 ping / every 5 dive 48 hours 13 2076 m 2150 m 

Table 4.4-1: Simulations results – mean and standard deviation are computed once the filter has “converged” – we 
establish that the filter has converged when we get better results with the particle filter than with the dead reckoning 

process. 
Resolution of the bathymetric chart: 0.5’ (~926m) 

 

Given those results, what we can imagine in order to save energy while keeping a good 

positioning accuracy is to set different pinging policies along the trajectory. 

 

- During the first hours of the mission we need a high rate of depth measurements in order 

to converge quickly. We can first rely on the dead reckoning process that has not drifted 

too much before giving more weight to the terrain navigation particle filter. 

 

- Once those few hours are spent, the glider does not have to emit a ping at every dive, 

however if the glider is flying over a rough sea floor, it can be interesting to sample the 

depth with a high rate in order to improve the positioning accuracy. This would have to 

be established prior the mission given the desired trajectory. 

 

To conclude, as expected, the pinging policy is a tradeoff between the desired navigation 

accuracy and energy consumption requirements.  
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4.5 Influence of dead reckoning 
 

In this section the influence of the dead reckoning accuracy on the TBN-PF estimated 

position accuracy is being studied. This section outlines a comparison between the already 

existing low cost dead reckoning process and a much more accurate navigation estimation 

process (for example with the use of a Inertial Navigation System aided with a Doppler Velocity 

Log). The aim is to see the improvement done in navigation accuracy thanks to the use of INS. 

4.5.1  “Low cost” position estimation  

Till now we have considered a dead 

reckoning obtained thanks to: 

- hydrostatic pressure measurements 

leading to the vertical speed of the glider 

- attitude measurements : pitch and roll 

- heading got thanks to a magnetic 

compass 
 

Figure 4-37: simplified principle of the simulation 
 

With such input parameters we underlined the fact that the glider was not able to identify the 

current. The figure 4-38 synthesizes this idea. So, till now, the idea of the simulation was to 

submit particles to this “wrong” position estimation (trajectory similar to the green line on the 

figure 4-39), while the glider was sampling depth, and so providing data to the TBN-PF along 

the real trajectory followed (black line).  

 
Figure 4-38: Desired trajectory (green) – Real trajectory followed (black) 

Evolution of the particle 
cloud 
According to the dead 
reckoning process 

Time T 

Time T+1 

Real Glider evolution 

Depth measurement (T+1) 
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Application: what is the expected navigation using a low cost navigation process? 

We will use a trajectory made of three 

waypoints: 

- Diving target depth = 180m 
- Climbing target depth = 20m 
- 1 ping every 5 dives 

 
Figure 4-39: Influence of sea currents on 

desired trajectory 

 
Figure 4-40: Desired trajectory 

  
The figure 4-42 illustrates the 
particle filtering process. The 
top figure represents different 
trajectories followed: 

- magenta line: particle 

filtering result 

- black line: real 

trajectory followed by 

the glider and 

providing depth 

measurements 

- yellow line: Dead 

reckoning process 

unable to see the 

current 

 
Figure 4-41: Particle filtering process when the glider is not able to see the 

current 
 

On figure 4-42, the bottom left figure shows the bathymetric profile seen by the glider. The 

bottom right picture represents: 

- green line: distance between the real position and the dead reckoning estimate 

- blue line: distance between the real position and the particle filter position. 

This simulation clearly highlights the interest of using the terrain navigation particle filter to 

improve the estimation of the glider position. 
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4.5.2 Accurate position estimation – use of a DVL aided INS 

In fact, in the simulation below, we 

consider that, thanks to a DVL, the glider is 

able to see the current and so to exploit it 

within the dead reckoning process. The 

figure 4-43 tries to summarize this idea. 

 
 

Figure 4-42: Particle’s cloud follows the same dynamic 
than the glider constrained by currents 

 
Figure 4-43: The dead reckoning is now able to send the glider back to the real trajectory followed (black) 

We use exactly the same simulation parameters, and we obtain: 
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Figure 4-44: Particle filter using an accurate dead reckoning 

Evolution of the particle 
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The figure 4-46 is a comparison of particle filtering results. It represents the distance between 

this PF position estimation and the real position where the depth measurement has been taken. 

The blue line refers to a “rough” dead reckoning process as seen in the part 1, while the red line 

refers to a much more accurate dead reckoning process using for example a DVL aided INS. 

Those two navigation estimation processes are coupled with the TBN-PF, to feed the prediction 

step. 
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sigmaDVL = 793.97 m

sigmacompass = 1755.08 m

meanDVL = 1229.71 m

meancompass = 1626.28 m

compass dead reckoning
DVL dead reckoning

 
Figure 4-45: influence of dead reckoning accuracy on TBN-PF accuracy - results 

 

Those results outline the idea that a very accurate dead reckoning process is not compulsory to 

run the terrain navigation particle filter with acceptable results. Thus, despite some spikes, a 

“low cost” dead reckoning process combined to this TBN-PF seems to reach a satisfying 

accuracy in the position estimation process. 

 

Glider Mission Simulation 

Results of a Ligurian sea mission and of Arctic crossing simulations are presented and 

examined in Annexes 4 and 5. 
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5  Inertial Navigation System – Uncertainty estimation algorithm  
(based on the paper of Piotr KANIEWSKI – military University of technology, Poland [8]) 

 

In this section we would like to see what is the underwater positioning accuracy using an Inertial 

Navigation System for comparison with the terrain navigation particle filter. There are already 

many studies on this subject combining an inertial measurement unit (IMU), a Doppler velocity 

log (DVL), an electronic compass (EC), a depth sensor (DS). 

 The study of Piotr Kaniewski (Military University of Technology, Poland) is one of those. In his 

simulation he considers: 

- IMU velocity and attitude errors 

- DVL velocity errors 

- DS depth errors 

5.1 Kalman filter 
 
We will implement here a Matlab algorithm of a Kalman filter based on the state space model 

provided by the paper of P. Kaniewski. Thanks to this Matlab algorithm we will be able to see 

the performance of the inertial navigation system: IMU + DVL. 

The figure 5-1 illustrates the velocity 

uncertainty in m/s of: (sensors specifications in 

Annex 2) 

- IMU Kongsberg MRU-Z (red) 

0.05m/s2 uncertainty on acceleration 

- DVL RDI Workhorse Navigator (blue). 

0.3 cm/s uncertainty on velocity 

Considering:  

( ) ( 1)velocity velocity accelerationk k Tσ σ σ= − + ∆  

We can clearly see the drifting nature of the 

IMU’s velocity error due to the integration 

process. 
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Figure 5-1: Velocity uncertainty of DVL and IMU 
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uncertainty on positioning: IMU alone 

Due to the double integration process, this 

uncertainty increases indefinitely. This burden 

is the consequence of the addition of all 

former uncertainties. 

( ) ( 1)

( ) ( 1) ( 1)
velocity velocity acceleration

position position velocity

k k T

k k k T

σ σ σ

σ σ σ

= − + ∆

= − + − ∆
 

The figure 5-2 clearly outlines the need to 

combine the IMU data with an extra sensor. 
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Figure 5-2: Positioning errors of IMU without correction 

  
Ixsea provides for example the following 

specifications for its Inertial Navigation 

System ROVINS positioning performance: 

 

- With DVL:  0.2% of traveled distance 

- No aiding for 1 min/2 min => 1.5 m/6 

m 

 

The figure 5-3 is the Matlab implementation 

of the noise that confirms those performances. 
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Figure 5-3: IMU stand alone performances 

  
Thus the idea to improve underwater navigation performance is to use an integrated positioning 

system that combines data from an IMU and a DVL. 

 

Discrete model of the system: dynamic model and observation model 

( 1) ( 1, ) ( ) ( )
( ) ( ) ( ) ( )

x k A k k x k w k
z k H k x k v k

+ = + +
= +

 

x       - state vector to be estimated via Kalman filter 
( )w k - vector of random process disturbances 

A      - state transition matrix 
z       - measurement vector 
( )v k  - vector of measurement noises 

H     - observation (measurement) matrix 
The Kalman filter used in the positioning system for AUV estimates error of IMU and provides 

for correction of IMU velocity components. 
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The state vector is made here of IMU uncertainties. 

( )
( )

( ) ( )
( )
( )

N

E

E

N

Z

v k
k

x k v k
k

v k

δ
δφ
δ
δφ
δ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟=
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎝ ⎠

 

Nvδ   - IMU velocity uncertainty along the North axis 

Eδφ    - IMU attitude uncertainty around the East axis 

Evδ    - IMU velocity uncertainty along the East axis 

Nδφ    - IMU attitude uncertainty around the North axis 

Zvδ    - IMU velocity uncertainty along the Down axis 

 

Dynamics model: 
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g - gravity acceleration 

R - Earth’s radius  

T - Sampling interval of the 

discrete model. 

w - Discrete random process 

disturbance 
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If we consider the Kongsberg MRU-Z, the noise w 

presents those characteristics. 

0x =      20.05 .acc m sσ −=      0.15angleσ = o  

 

The covariance matrix of discrete random 

process disturbance 
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Observation Model: Observations consist here in measuring the current velocity uncertainty 

using a DVL 
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If we consider the RDI Workhorse 

Navigator DVL, the measurement noise v 

presents those characteristics. 

          0x =  

          10.5 .vel cm sσ −=  

The covariance matrix of measurement 

errors: 

N

N E Z E

Z

vel

vel vel vel vel

vel

R

σ

σ σ σ σ

σ

⎡ ⎤
⎢ ⎥

⎡ ⎤= ⎢ ⎥⎣ ⎦
⎢ ⎥
⎣ ⎦

 

Equations of the linear covariance Kalman filter: 

Here we just model the behavior of uncertainty using an IMU alone and using both IMU and 

DVL. 

 

1

( 1| ) ( | )
( 1| ) ( | )

( 1) ( 1) ( 1| )
( 1) ( 1| )

( 1) ( 1| ) ( 1)
( 1| 1) ( 1| ) ( 1) ( 1)
( 1| 1) ( 1| ) ( 1) ( | 1)

T

T
e

T
e

x k k Ax k k
P k k AP k k A Q
res k z k Hx k k
R k HP k k H R

K k P k k H R k
x k k x k k K k res k
P k k P k k K k HP k k

−

+ =

+ = +
+ = + − +

+ = + +

+ = + +
+ + = + + + +
+ + = + − + +

 

( | )x k k  - estimated state vector at a time k after the measurement update, 

( 1| )x k k+  - estimated state vector at a time k+1 - before the measurement update, 

( 1| 1)x k k+ +  - estimated state vector at a time k+1 - after the measurement update, 

( 1)res k +  - residuals (or innovation) vector at a time k+1, 

( | )P k k  - covariance matrix of filtering errors at a time k, 

( 1| 1)P k k+ +  - covariance matrix of filtering errors at a time k+1, 

( 1| )P k k+  - covariance matrix of prediction errors at a time k+1, 

( 1)eR k +  - covariance matrix of innovations at a time k+1, 

( 1)K k +  - Kalman gains matrix at a time k+1, 

Q   - covariance matrix of discrete random process disturbances, 

R   - Covariance matrix of measurement errors. 
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Application: Kalman filter 

In this simulation we will consider an INS made of: - IMU Kongsberg MRU-Z 

- RDI Workhorse Navigator DVL 

Figures 5-4 and 5-5 present results of a simulation length set to 1 hour with a sampling rate of 5Hz. The 

uncertainty on velocity is clearly improved thanks to the kalman filter. 
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Figure 5-4: Comparison of north velocity errors of 

IMU, DVL and IMU/DVL 
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Figure 5-5: Comparison of east velocity errors of IMU, 

DVL and IMU/DVL 
 

Figures 5-6 and 5-7 highlight the improvement in positioning thanks to the combination of DVL and IMU 

data.  
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Figure 5-6: Positioning errors of IMU 2 2x yδ δ+ without 

correction from DVL 
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Figure 5-7: Positioning errors of IMU 2 2x yδ δ+ with 

correction from DVL 
The figure 5-8 is another way to illustrate the growth of the positioning uncertainty using a Kalman filter 

that combines an IMU and a DVL with uncertainty ellipsoid every 30 minutes. 

 
Figure 5-8: uncertainty ellipsoid growth – 5 hours simulation at a 5Hz sampling – ellipsoid update every 30 minutes 

 

The strong vertical uncertainty is then reduced significantly by assimilating depth observations through a 

complementary filter. 
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5.2 Complementary filter 
 

The use of a complementary filter also allows an improvement on the vertical position. Given 

that we have now two different estimates of the depth of the vehicle, we can use a 

complementary filter that combines the KFz obtained from processing IMU and DVL data with 

the depth sensor data. 

 

A complemtary filter is defined as followed: the filter deals here with uncertainties 

(0) 0
( 1) 1 1( 1) ( ) ( 1) ( ) 0

DS

DS KF KF

z for k
z k Nz k z k z k z k for k

N N

⎧ =
⎪+ = ⎨ − ⎡ ⎤+ + + + − >⎪ ⎣ ⎦⎩

 

KFz   - depth’s uncertainty of AUV from processing IMU and DVL data 
DSz  - depth’s uncertainty of AUV from the pressure meter DS 

z  - final estimated depth’s uncertainty of AUV (output of the system) 

N   - constant parameter of the complementary filter. More N will be weak and more we will 

give confidence to the depth sensor measurements. 
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Figure 5-9: Comparison of depth errors of Depth Sensor (DS), IMU/DVL and IMU/DVL/DS – 600 seconds 

simulation – sampling frequency F=1Hz 
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5.3  Energy consumption of an inertial navigation system  

In this simulation we will consider: 

- IMU Kongsberg MRU-Z: 

consumption 3 Watts 

- DVL RDI workhorse Navigator: 

consumption 8 Watts 
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Figure 5-10: Trajectory used to check the Energy consumption of an 

INS – 158 days trajectory 
Energy consumed repartition Other - low consumption sensors

Ballast pump = 2745.00 kJ
Echo sounder = 1921.50 kJDVL = 100226.03 kJ

IMU = 37584.76 kJ

Other = 5600.27 kJ

Attitude sensor = 626.

Pressure sensor = 626.41 kJ

vehicle controler = 2380.37 kJ

Science payload = 1879.24 kJ

Pinger = 87.84 kJ

 
Figure 5-11: Energy consumption repartition among all glider’s devices 
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Figure 5-12: overtake of the energy budget 

The figure 5-12 clearly underlines that even 

with low consumption inertial navigation 

instruments, the use of an Inertial 

Navigation System remains very 

“expensive”. Thus, the use of such a system 

on a whole glider’s trajectory is above the 

affordable energy budget with 26 battery 

packs. 
 

This supports the idea that Terrain Navigation is much more suited to long range glider’s 

missions. The total energy consumption is close to 160 MJoules. In current life, this consumption 

represents some 37 days of laptop energy requirements, while the glider’s battery (7800 KJoules) 

is only able to provide 1.5 day of autonomy. Nonetheless, thanks to the Inertial Navigation 

System uncertainty algorithm implemented before, we will be able to compare the accuracy of 

the Terrain Navigation Particle Filter with a classical INS.  
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6 Comparison Terrain Navigation Particle Filter (TBN-PF) / 
Inertial Navigation System (INS) 

This comparison of course strongly depends on the pinging policy, the variation in bathymetry, 

but it allows to give an overall idea of the interest of TBN-PF for long period submerged 

operations.  

In this section, a comparison is 

performed on estimated position 

using two different underwater 

navigation systems: 

- TBN-PF 

- INS made of the combination 

of an IMU, a DVL, an EC and a 

DS. 
 

Figure 6-1: trajectory used for the comparison 

The figure 6-1 represents the 

trajectory used to run the terrain 

navigation particle filter. It is a 

3.5 days simulation in the 

Ligurian Sea, with a pinging 

policy of 1 ping every 5 dives. 
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The figure 6-2 illustrates the 

evolution of the uncertainty 

ellipsoid we have with the use of 

the TBN-PF algorithm. The 

confidence on the estimated 

position is clearly improved with 

increasing number of 

observation. 
 

Figure 6-2: TBN-PF uncertainty ellipsoid of estimated position 
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Below is the comparison between the TBN-PF and the Inertial Navigation System position 

uncertainty after 3.5 days of underwater navigation.  

The figure 6-3 is the result of the 

inertial navigation system (INS) 

uncertainty algorithm at 1Hz which 

combines: 

- An IMU with a DVL using a 

Kalman filter 

- The IMU/DVL kalman filter 

estimated depth with the depth 

measured using a depth sensor 

through a complementary filter. 
Figure 6-3: Evolution of position’s uncertainty along the glider 

trajectory - We can clearly see the drifting nature of an INS 
 

Thanks to the INS the glider is now able to see the current but its position estimation is burdened 

by a growing error. Now if we put those two different positioning systems uncertainty results on 

the same figure, we obtain the figure 6-4.  

 
Figure 6-4: comparison TBN-PF (green) / INS (red) - uncertainty on estimated position 

 
This figure supports the idea that after a long range mission, where an INS is burdened by drift, 

the terrain navigation seems to be a perfect tradeoff to meet: 

- an accurate and precise position’s estimation 

- a restricted energy budget 

- a low cost navigation system 
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Conclusion 
 

As underlined in the abstract, the final objective of this project was to study the feasibility of a glider 

deployment under ice in the Arctic using Terrain Based Navigation approach. Given results furnished by 

the TBN-PF simulation development, this conclusion tries to provide clear answers to the fundamental 

question that has been raised: “Can we use a terrain navigation algorithm for a long range under ice 

mission in the Arctic Ocean?” 

 

This study has shown that the answer to this question would be yes. In fact, the Terrain Based Navigation 

principle using a particle filter seems to be a perfect tradeoff to meet: 

- an accurate, precise and independent positioning estimation process 

- a restricted energy budget 

- a low cost navigation estimation process 

Those three criteria are the backbone for a successful long range under-ice glider mission. 

 

The TBN-PF: an accurate, precise and independent positioning estimation process 

 
Fig Conclusion 1: accuracy (distance between the estimation and the real position) vs. precision 

(particles’ cloud spreading) for the position estimation process 
 
The particle filter has the ability to track a variable of interest over time thanks to the weight distribution 

and the re-sampling processes (see fig Conclusion 1). This tracking effect, which is strongly linked to the 

number of observations, has nonetheless the nice property to be “independent of time”. This time 

independence of the navigation uncertainty, matches perfectly with a long range mission context. 

 

Both accuracy and precision of the particle filter navigation estimation are linked to the resolution of the 

bathymetric chart and with the unique variability of the seafloor. Thus, for an Arctic crossing where the 

seafloor elevation presents significant variations, except for flights above Eurasian and Beaufort basins, 

the estimated position accuracy reaches promising results. 
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Moreover, the particle filter process presents the nice ability to detect any wrong track by comparing the 

estimated and measured depth. As soon as a wrong track is followed (this leads to a significant difference 

between estimated and measured depth), a particle explosion is applied from the last estimated position, 

and the tracking process restarts. 

 

Finally, the particle filter works in a Bayesian framework, this probabilistic approach allows having some 

freedom in the dead reckoning process (prediction step) given that we work with a cloud of particles 

instead of working with a punctual isolated glider. Thus we just need some particles to be at the “right 

location” in order to converge to the real position. 

 

The TBN-PF: a low energy consumption process 

As underlined in Annex 3, Autonomous Underwater Vehicles (AUVs) operate solely on battery power, 

the mission endurance of today’s AUVs depends highly on the capacity and usage of these batteries. It 

has been also highlighted that the use of an Inertial Navigation System made of an Inertial Measurement 

Unit and a Doppler Velocity Log would be too expensive for the limited energy budget of a long range 

glider’s mission. 

 

In this context, the use of the terrain navigation seems to be a perfect low energy consumption navigation 

solution. Moreover, given the tracking principle, the glider does not need to acquire a bathymetric 

observation at each time step, which allows significant energy savings (as underlined in Fig Conclusion 

2). The terrain navigation can be used here to re-initialize the dead reckoning process like the Global 

Positioning System would do. Thus with a clever pinging policy, the glider would be able to accomplish a 

long range mission while keeping an acceptable position accuracy, in the range of the bathymetric chart’s 

resolution. 

Energy consumed repartition Other - low consumption sensors

Ballast pump = 2827.50 kJ

Echo sounder = 1320.20 kJ

Other = 5739.68 kJ

Attitude sensor = 645.38 kJ

Pressure sensor = 645.38 kJ

vehicle controler = 2452.44 kJ

Science payload = 1936.13 kJ

Pinger = 60.35 kJ

 
Fig Conclusion 2: Arctic crossing energy budget – thanks to a limited pinging policy, the Kongsberg 

EA600 Single Beam Echo Sounder (processing unit 75W + pinger 2kW) represents a small part of the 
global energy consumption  
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The TBN-PF: a low cost navigation estimation process 

Space, ballasting and energy are the limiting factors 

of a glider mission. It seems difficult to meet with 

those three requirements at the same time. However 

the Terrain Based Navigation using a Particle Filter 

seems to be one of the best alternatives to meet 

those constraints while keeping accuracy more than 

acceptable given the cost of navigation instruments 

used. The Fig Conclusion 3 outlines in a qualitative 

way the interest in using the TBN-PF. 
Fig Conclusion 3: qualitative comparison underlying the 

interest of using the TBN-PF process 

 
Technologic improvements that have to be done before a deployment 

The key idea behind using the terrain based navigation principle lies in the acquisition and processing of 

an accurate bathymetric data. However, for a deep water deployment area, where a low frequency single 

beam echo sounder (SBES) able to reach 4,000m range has to be used, a problem appears. The size and 

weight of transducers would not fit onboard a classical deep water Slocum glider. 

In order to face this mechanical issue, two alternatives can be imagined: 

- increase the payload capability of the actual deep water Slocum glider in order to allow for 

example the setting up of both the Kongsberg EA600 transducer (5kg - 11cm x 24cm x 28cm) and science 

sensors 

- develop very deep water gliders 

Deep water gliders are now being developed. Those vehicles would be able to reach a depth of some 4000 

meters. This capability would allow the use of a smaller and higher frequency SBES such as the Knudsen 

mini sounder (frequency: 24kHz – 210kHz, weight < 3kg - 257mm x 158mmx 89mm). The Annex A5.2 

of this paper outlines the Arctic crossing simulation promising results of such a very deep water glider. 

 

Importance of a clever mission planning 

The mission planning remains one of the most important tasks for the success of a long range glider’s 

mission. This TBN-PF simulation gives a global idea of the glider’s behavior if combined with an 

adequate current model, but it also provides the expected accuracy in the positioning estimation process 

given the desired trajectory and the specified pinging policy. 

 

Outcome 

The Terrain Based Navigation using a Particle Filter is a promising independent navigation estimation 

process for a long range under ice mission. However, the bathymetric data collected must be accurate, and 

till now, due to ballasting constraints, a classical glider has not been able to load a low frequency single 

beam transducer able to collect accurate deep water bathymetric data. 

TRN-PF / INS qualitative comparison 

short term accuracy 

midle term accuracy

long term accuracy

energy consumption

cost

weight/size

TRN-PF INS
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Annex 1: Coordinates conversion 
 

Geographic coordinates to UTM coordinates 
(Source: geodesy manual – L. Morel [11]) 

 
The Universal Transverse Mercator coordinate system was developed by the United States Army 

Corps of Engineers in the 1940s. The UTM system divides the surface of Earth between 80°S 

and 84°N latitude into 60 zones, each 6° of longitude in width and centered over a meridian of 

longitude. 

It belongs to the cylindrical projection family. A cylindrical projection is produced by wrapping 

a cylinder around a globe representing the Earth (see figure A1-2).  

 
FigureA1-1: passage from the ellipsoid ( , )ϕ λ  to the 

sphere ( , )Φ Λ  (Gauss–Laborde transformation) 
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Figure A1-2: tangent cylindrical projection of the 

sphere 
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Geographic coordinates to stereographic polar coordinates 
(Source: geodesy manual – L. Morel [11]) 

 

The stereographic projection is a mapping 

function that projects a sphere onto a plane. It 

is conformal, meaning that it preserves angles. 

However, it is neither isometric nor area-

preserving, in other words it preserves neither 

distances nor the areas of figures.  
Figure A1-3: stereographic projection of a sphere on a 

plane 
 
Step 1: passage from the ellipsoid ( , )ϕ λ  to the sphere ( , )Φ Λ  

 
Figure A1-4: passage from the ellipsoid ( , )ϕ λ  

to the sphere ( , )Φ Λ  
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Step 2: passage from the sphere to the plane 

 
Figure A1-5: passage from the sphere to the 

plane 
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Annex 2: Product survey 
 
The Slocum glider is already fitted with many instruments such as: 

- CTD sensor 

- Depth sensor 

- Attitude sensor providing heading, pitch and roll measurements. (TCM3) 

Both shallow and deep Slocum gliders provide a science payload where many other instruments 

can be set up. 

As underlined in the Slocum glider 

manual, the payload was designed for 

easy removal and replacement for 

calibration needs or sensor type changes, 

allowing for great ease and flexibility to 

the user. 

Nominal capacity: 

- Shallow water glider: 4 kg 

- Deep water glider: 2.5 kg 

 

In this section we want to conduct a product survey of extra navigation sensors that could be 

used on a glider to improve its position estimation process. 

 

We will focus on sensors such as:  - Single Beam Echo Sounder 

     - Inertial Motion Sensor 

     - Doppler Velocity Log 
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Single Beam Echo Sounder 
 
Before starting the research, we have to define what we want. In order to reduce the research action field 

the sonar equation can be used. 

 

Sonar equation (source: sonar acoustic manual of M. Legris [12]) 
 

Given underwater acoustic theory, we would like to find out the best technologic solution for a glider’s 

mission under the arctic. There are three parameters that have a key influence on system’s performances: 

   - The sonar itself 

- The propagation environment 

- The target 

The sonar itself 

As far as sonar is concerned, performances are linked with both source and noise levels, with the antenna 

directivity both in emission and reception, and with the internal data processing. 

SL:  Source Level – Pulse energy of the active sonar 
NL: Noise Level – system internal noise (electronic or ambient) 
DI:  Directivity Index – antenna lobe directivity 
PG:  Processing Gain 
DT:  Detection Threshold 
 
The propagation environment 

The propagation environment is going to act by generating transmission and absorption losses. 
TL:  Transmission Loss – geometric divergence and absorption losses 

RL:  Reverberation Level  
NL:  Noise Level 
 

 
Figure A2-1: Wenz ocean noise model 

 
Figure A2-2: sea water coefficient absorption 

  
Given that the coefficient absorption is a 

function of the square of the frequency, we can 

have a global idea of some sounders range as 

the figure below illustrates this. 

Sounder frequency Range 

10 kHz >10 km 

50 kHz 5 km 

100 kHz 1000 m 

500 kHz 150 m 

1 MHz 50 m 

Table: Global idea of sounders range 
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The target 
 
The target can be either the sea bottom or a for example a submarine. It can be characterized by 

two parameters: 
TS :  Target Strength – Strength of the echo that goes back to the sonar 

SL : Source Level – in the case of a passive sonar 

 

Sonar equation 
The aim is to compare the received signal with the global noise (Signal to Noise Ratio SNR), and 

so to see if the system is able to detect the target. 

signalSNR treshold
noise

= >  

If we consider active sonar, and if we work in dB, the sonar equation can be written as:  

SL - 2TL + TS - NL + DI + PG > DT  

With: 

 SL: source level 

 TL: transmission loss 

 TS: target strength 

 NL: noise level 

 DI: directivity index 

 PG: processing gain 

 DT: detection threshold

 
Parameters definition 
 
Source level 
If we consider that the acoustic source broadcast an acoustic wave in far field according to a spherical 

symmetry, the pressure field can be expressed as: 

( ) jkrAp r e
r

=  

In order to define a parameter independent of the distance from the source and to work in dB, we set a 

reference distance from the source at 1m and we set a reference level at 1 µPa. Thanks to those 

considerations the source level can be expressed as: 

1020log
ref

pSL
p

=
 

It can be easily shown, considering the acoustic impedance that the expression above can be expressed as: 
1
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0
10 10 10 10

20 log

10 log 10 log 20 log 10 log
4
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cSL W p ρβ
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Then,   
10 1010log 10log 170.8 acoustic

elec
elec

WSL W with
W

β β= + + =  

Range of this source level is between 170 and 240 dB/1µPa/1m. 
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Transmission loss 
We have to consider two contributions: 

- Geometric divergence 

- Absorption by sea water due to 

molecular interactions(viscosity, 

4( )Mg SO , 3( )BO OH ) 

A global equation can be found: 

 

1020log
: ( / )

TL r r
with absorption coefficient dB m

α
α

= +
 

 
Figure A2-3: Absorption coefficient according to 

Francois and Garrison model 

 
Target strength or sea floor backscatter 
 
I represents the acoustic wave intensity. TS is expressed in 2dBm  

1
1010 log backscatter m

incident

ITS
I

=  

The seafloor backscatter can be expressed as: 

0 1010logBR BR S= +  
With S: insonificated surface 

This backscatter coefficient depends on the kind of impulsion (short or long). 

Considering the bandwidth B and the pulse length T, we are in short impulsion if: 
2

1 1 0.77BrBT or with
c D
ϕ λϕ> > =  

Short impulsion 

0 10 0 10 1010 log 10log 10logcBR BR S BR r
B
π

= + = + +  

Long impulsion 
2

0 10 0 10 1010 log 10log 20log
4

BR BR S BR rπϕ
= + = + +  
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Noise level 
 
Contrary to the popular though, Ocean is not 

at all a silent world. 

 

0 1010log
: bandwidth

NL NL B
with B

= +  

 

Here 0NL  is the ambient noise  
Figure A2-4: Wenz ocean noise model 

 

 
Directivity index 
 
For a circular antenna, both emission and 

reception gain can be expressed as: 

 
2

1010 logr e
DDI DI π
λ

⎡ ⎤⎛ ⎞= = ⎢ ⎥⎜ ⎟
⎝ ⎠⎢ ⎥⎣ ⎦

 

The opening at 3dB is defined as the angular 

sector that contains more of one half of 

global signal intensity, for a circular antenna, 

it can be defined as: 

32 42.3dB D
λθ− ≈  

 

Figure A2-5: Directivity function for a linear 

antenna 

 
Processing gain 
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Application: the idea is here to find the sounder range given frequency and sounder’s power 
thanks to the sonar equation. 

 
Figure A2-6: Ligurian sea conditionsT=10 C–S=35 

ppt 

  
Figure A2-7: Arctic Ocean conditionsT=0 C–S=28 

ppt

The sonar equation can allow us to dimensionalize the sounder: 

- Find the beam opening 
- Find the frequency 
- Find the size of the antenna that 

would fit into the glider 

- Find the power needed 
- Find the bandwidth 

In the case of an Arctic mission, we can expect that the maximum depth will be around 5,000 

meters, this threshold is set on the figure below as a red surface. 

 
Figure A2-8: sonar equation range results => find the 
frequency range and the power range that allows the 
sounder to detect the seafloor (red surface: 5000m) 

 
Figure A2-9: frequency range [10-50 kHz] – power 

[100-1000 W] 

 

Outcome: Thanks to the figure A2-9, we are now able to have an idea and so to select a 

frequency range and a power emission policy for our sounder. We can also underline that even 

with a significant power, high frequencies waves are not able to propagate far away in the 

environment. In this context, if we choose a sounder that emits at 30 kHz or less we should be 

able to detect the Arctic sea floor without using a huge amount of energy. 
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Sounder selection 

The echosounder has to collect accurate 

information about the sea bed in order to 

provide data to the terrain navigation 

particle filter.  
Figure: AUV multi beam echo sounder survey 

A broad range of sonars and echosounders exists: 

- Multibeam echo sounders 

- Wide-swath systems 

- Singlebeam echo sounders 

- Sidescan sonars 

- Imaging Sonars 

- Sub bottom profilers 

- Synthetic Aperture Sonar 

Each one of this system is dedicated to a specific mission. Here we have to do a compromise 

between the accuracy we need and the energy consumption. 

For a long range autonomous mission, given that on the one hand the place is limited, and on the 

other hand the energy is restricted; the most reasonable choice seems to be the use of a 

singlebeam echo sounder. The use of a multibeam echosounder for TBN is discussed in paper 

[16], while the paper [20] tackles the use of the bottom track of a DVL. 

       

On the website: http://www.hydro-

international.com/productsurvey, 

we can find a survey of latest 

single beam echo sounders 

released on the market.  

In this article we can find all parameters of interest that will lead us in the sounder selection. 

Some of those key parameters are: 

- Power consumption 

- Weight and dimensions 

- Frequency range 

- Depth range of operation 

- Depth resolution, accuracy 

- Power output of transducer 

- Pulse length 

- Beam angle

Given the sonar equation study did before, and given characteristics of those single beam echo 

sounders, we are able to find some systems that would fit with our mission. 
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Deep sea application (depth > 5000m) 

- Kongsberg EA 600:  

One of the single beam echo sounder 

that seems to match with our mission 

is the EA 600. It supports low 

frequencies and is suited for deep 

water operation. Frequency range is 

from 10 kHz to 710 kHz which allows 

to detect the seafloor from extreme 

shallow to 10,000m water depth. 

Transducer’s weight / dimensions: 

5kg – 11x24x28cm  

 
 

- Atlas Hydrographic GmbH – DESO 30 

The DESO 30 from Atlas would also match 

with our mission. The high frequency channel 

covers a frequency range from 100 kHz to 750 

kHz and is mainly used for survey applications 

in shallow water and for sidescan operation. 

The low frequency channel between 3.5 kHz 

and 50 kHz has a higher depth range and can 

also be used for sediment investigation. 

Transducer’s weight / dimensions: 

4.5kg – 18cm ∅  x 17cm height 

  
The main problem remains the weight and the size of such single beam echo sounder. Moreover, if we 

look for light SBES (weight < 2 kg), the range seriously drops below 100 meters. The Atlas Hydrographic 

GmbH – DESO 30 seems to be the best single beam echo sounder for an Arctic mission. However the 

buoyancy of the glider would have to be reshuffled. 

Power output: 
• 12 to 50 kHz Variable up to 2 kW 
• 70, 120, 200 and 210 kHz: Variable up to 1 
kW 
• 710 kHz: 100 W 
=> Pulse length: 64µs to 16 ms 
 
Supply voltage: 
• 95 to 265 Vac 
• 12 Vdc, 50 to 100 W
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Inertial Measurement Unit 
 

The glider is not originally fitted with an Inertial 

Measurement Unit (IMU). Till now, it relies on a 

low cost position estimation process. In this 

section we would like to see to what extent it is 

possible to fit the glider with such a device. 

 

 
Figure A2 -10: Inertial measurement unit of S3 Missile 

 

On most of AUVs, the IMU is one of the key elements that composes the global Inertial 

Navigation System (INS). A classical IMU such as the IXSEA octans3000 outputs heading, roll, 

pitch, surge, sway and acceleration. This data is then sent to the INS that combines all data 

coming from external sensors. As external sensors we can find for example a Doppler Velocity 

Log or an acoustic Long Baseline system. 

 
Figure A2-11: Underwater positioning solutions (source www.ixsea.com) 

A major disadvantage of using IMUs for navigation is that they typically suffer from 

accumulated error. This leads to 'drift', or an ever-increasing difference between where the 

system thinks it is located, and the actual location. However when a IMU is combined with an 

underwater acoustic positioning systems (as USBL), the position of a ROV, AUV or sonar can 

be determined with robustness and accuracy unequalled by any other system on the market. 
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Till now, the Slocum glider uses a tilt compensated 3 axes compass module (TCM3) 

Features 

• High resolution compass heading: 0.1º 

• High repeatability: 0.05º 

• Extra wide tilt range: +/- 80º 

• Calibrated magnetic field measurement range: +/- 

80 µT (+/- 0.8 Gauss) 

• Extended temperature range: -40º to 85ºC 

• Low Power: < 20 mA typical current draw 

• Small size: 3.5 x 4.3 x 1.3 cm 

• Weight : 12 g 

 
• Compass heading accuracy : 0.5 º 

• Pitch Accuracy 0.2° 

• Roll Accuracy: 

          0.2º for pitch < 65º 

          0.5º for pitch < 80º 

          1.0º for pitch < 86º 

If we do an IMU product survey in order to have an idea of the accuracy we can get with such a 

device, we can find: 
 

- Ixsea octans 3000 subsea gyrocompass and motion sensor 

OCTANS is a subsea survey-grade gyrocompass 

and complete motion sensor for water depths up to 

3,000m. Based on FOG technology it outputs 

heading, roll, pitch, surge, sway and acceleration. 

Heading  

Accuracy 0.1 deg 

Resolution 0.01 deg 

Roll / Pitch 

Dynamic accuracy 0.01 deg 

Resolution 0.001 deg 

Power consumption 15 W 

 
IXSEA use fibre-optic gyro (FOG) technology in 

their systems. A FOG is a gyrometer, which is a 

sensor that instantaneously measures the 

rotational speed of a mobile platform. The FOG is 

based on the Sagnac effect, discovered in 1917 by 

a physicist named Georges Sagnac. 
 

- Kongsberg Motion Reference Unit (MRU) 

The MRU family is the highest performance model 

measuring six degrees of freedom.. It outputs 

absolute roll, pitch and yaw (heading), and relative 

heave (dynamic). Acceleration and velocity of the 

linear motions, as well as angular acceleration and 

velocity, are also outputed. MRU-Z specifications: 

- Housing dimensions Ø105x129 mm  
- Weight 1.5 kg 
- Power requirements 12-30V DC, Max. 3 W  
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Doppler Velocity Log 

 

 
Workhorse Navigator DVL 

In order to improve the underwater position estimation, we can investigate the possibility 

to fit a glider with a Doppler Velocity Log (DVL). As specified in the datasheet, Teledyne RDI’s 

highly acclaimed Doppler Velocity Log (DVL) provides precise and accurate velocity and 

altitude updates for a wide variety of underwater tasks. One of the underwater task can be the 

determination of a reliable and accurate high-rate navigation and positioning data. Thus, the 

Workhorse Navigator DVL can be used stand alone to collect high precision velocity data, or can 

be integrated into an existing navigation system to provide frequent, and crucial, navigation 

updates. 

 

 
Figure A2-11: Structure of the positioning process for an AUV – source: INTEGRATED POSITIONING SYSTEM 

FOR AUV (Piotr KANIEWSKI, Military University of Technology, Warsaw, POLAND) 

 

As the figure A2-11 highlights it, the velocity data provided by the DVL can be integrated in a 

complete navigation system in order to correct the Inertial Measurement Unit data from 

environmental constraints. In other words, the AUV is now able to identify the current to which 

it is submitted. 

The measurements of accelerometers and gyros have various types of errors (biases, scale factor 

error…), and thus inertial positioning through integration of accelerations is burdened with errors 
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that increase without bound. For this reason, the combination of IMU and DVL data is usually 

done thanks to a Kalman filter. 

 

RDI Workhorse Navigator DVL specifications 

 

 
Navigator full suite of capabilities: 

• Bottom track velocity 

• Water track velocity 

• Altitude: 4 individual measurements 

• Error velocity (data quality indicator) 

• Temperature 

• Heading/Tilt 

• Acoustic echo intensity 

• Pressure and depth (optional) 

• Current profiling (optional) 

 

The most problematic issue that appears here is the weight of a DVL. We clearly overtake the 

nominal weight we are allowed to set on a glider.  
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Annex 3: Energy budget 
 

Given that Autonomous Underwater Vehicles (AUVs) operate solely on battery power, 

the mission endurance of today’s AUVs depends highly on the capacity and usage of these 

batteries. Typically, missions for the Slocum Electric Glider last about 30 days. Longer missions, 

such as the 221 day mission to cross the Atlantic by RU27 from Rutgers University are possible 

through an increase in the number of batteries and through the careful planning of the usage of 

the vehicle’s devices. 

 

Mission critical tradeoff decisions have to be made between energy consumption and 

sensing, data processing, and communication activities. 

 

In this context, effective power and energy management requires knowledge about the 

actual energy consumption of each active component within the AUV. So, to perform more 

precise mission planning, being conscious of the energy consumption of individual components 

is necessary. 

 
Figure A3-1: Slocum glider structure 
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Glider’s main components requiring energy consumption 
 
Displacement Piston Pump(Buoyancy Pump) 
           The ballast pump is used to change the 

buoyancy of the device. A single-stroke piston, 

using a 90 watt motor and a rolling diaphragm 

seal, moves 504 cc of sea water directly into 

and out of a short 12 mm diameter port on the 

nose centerline. 

 
The course of the piston is usually set to 

displace 200 cc of water. 

 

Thus for each inflection the pump has to move some 400 cc using a 90 Watts motor with a debit 

of 24 cc/sec.  

Pitch Vernier 
To trim to the desired dive and climb angles a lead screw drives the forward 8.4 Kg 

battery pack fore or aft as a vernier. The battery pack is put full forward during surfacing to 

better raise the tail out of the water for communications. 

Altimeter 
The transducer is mounted such that it is parallel to a flat sea bottom at a dive angle of 

nominally 26 degrees. If we consider the use of the Kongsberg EA600, the processing unit 

requires around 75 Watts, but we can imagine to set up a low consumption “sleep mode”, while 

the transducer requires some 2 kW during 16ms. 

CTD 
SeaBird is now developing low-power CTD for autonomous gliders with the high 

accuracy necessary. Those sensors consume only 150 mW while sampling at 1 Hz. 

Vehicle Controller 
A Persistor CF1, based on a Motorola 68338 processor is used to control the functions of 

the Glider. In literature, we can find an energy consumption of 0.19 W at a clock rate of 3680 

KHz. 

Attitude Sensor  

          The Precision Navigation TCM2-50 provides the 

bearing, pitch, and roll indications of the Glider with a 

sampling rate between 1 and 30Hz.  These inputs are 

used for dead reckoning the vehicle while under water.  

Recalibrating the compass, depending on the magnetic 

anomalies of the usage area, may at times be necessary. 
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Power Requirements 

Supply Voltage:  - +5 V-DC regulated or 6 to 18 V-DC unregulated 

Current:  - Operating standard mode: 15-20 mA 
- Operating low power mode: 7-13 mA 
- Sleep mode: 2.5 mA 

Pressure Transducer 
Micron 300 PSIA strain gage transducers are used for vehicle control and dead 

reckoning. In literature, we can find an energy consumption of 50 mW 

ARGOS (source: www.argos-system.org) 
Argos locations are calculated by measuring the Doppler shift on the transmitter signals. 

The processing center calculates an initial estimate of the transmitter's position from the first and 

last messages collected during the pass and the most recent calculated frequency. In literature, 

we can find that the energy consumption is close to 1W. 

Air Pump System 
An air bladder in the flooded tail cone is used to provide additional buoyancy on the 

surface for bettering communications (the tail fin houses three antennas:  ARGOS 401 MHz, RF 

modem 900 MHz, and a patch with combined GPS 1575 MHz and Iridium 1626 MHz). It is 

inflated, using air from the hull interior, providing 1400 ml of reserve buoyancy. 

GPS  
A Rockwell Jupiter engine turned on and while on the surface is used to locate the 

Glider’s position. When the glider is in surface it gets a GPS fix every 5 seconds. In literature, 

we can find that the energy consumption is close to 975 mW. 

Iridium  
Iridium delivers reliable, near real-time, mission-critical 

communications services and creates the vital lines of 

communication that help improve lives, build 

businesses, and develop new opportunities.  
 

If we consider The Iridium 9602 SBD transceiver, we can find an average power of 1W 

RF modem  
Freewave 900 MHz radio modem is used for the local high-speed communications link to 

the Glider. In literature, we can find that the energy consumption is close to 1W. 

Batteries 
Battery packs consist of 10 Duracell C-cells in series, diode protected, nominally 15 

volts. As indicated below, the number of packs can be adjusted depending on reserve buoyancy 

after Payload considerations.  Given 26 packs (260 C-cells) the battery weight is 18.2 kg and 

energy available 7,800 kJoules. This battery pack would be able to provide power to a laptop for 

more than 37 hours. 
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Evolution of the Energy consumption 
The figure A3-2 illustrates the energy consumption evolution on one yo cycle. 

 
Figure A3-2: Energy consumption evolution on one cycle 

Given all those energy consumption requirements we are now able to have an idea of the global 

energy consumed during a mission (Figures A3-3 and A3-4) 

 
Figure A3-3:  trajectory used for the simulation (7 days) – desired trajectory (green) – real trajectory followed 

(black) 
Energy consumed repartition Energy Budget

Ballast pump = 667.50 kJ

Echo sounder = 252.00 kJ

Pinger = 10.75 kJ
Attitude sensor = 30.41 kJ

Pressure sensor = 30.41 kJ

vehicle controler = 115.56 kJ

Science payload = 91.23 kJ
Argos = 2.70 kJRF modem = 0.60 kJGPS = 0.58 kJ Energy consumed = 1201.75 kJ

Energy left = 6598.25 kJ  
Figure A3-4: Energy budget study on a 7 days trajectory 
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Annex 4: Ligurian Sea deployment: 
During June, a fleet of Slocum gliders has been deployed at sea in order to test their 

behavior and to train glider’s pilots. In the mission planning, the glider has been desired to go 

back to the surface every 5 hours and every time that its dead reckoning process (black line on 

the figure A4-2) thinks having reached a waypoint. When it surfaces the glider estimates the 

current thanks to the difference between its last dead reckoning position estimation and the first 

GPS fix (blue arrows on the figure A4-2). 

 
Figure A4-1: Real glider deployment - mission’s 

length: 14 days 21 hours 

 
Figure A4-2: zoom in the lower part of the trajectory 

Glider’s navigation data 
 

Given that the gliders is “always” trying to go back to the surface to get a GPS fix, it is not very 

easy to compare this in situ deployment with the TBN-PF simulation developed in this paper. 

The idea behind using terrain navigation is to have a low cost positioning estimation process for 

long period submerged mission, which was unfortunately not at all the aim of this Ligurian Sea 

deployment. 

The simulation that follows is 

roughly based on the same waypoints 

but reduced (7 days mission) and 

illustrates the behavior of a glider 

using the terrain navigation for its 

navigation estimation process. 
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Figure A4-3: pinging policy of 3 pings per dive / every dive 
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In this simulation, the glider is constrained to remain underwater, without the possibility to 

acquire a GPS fix. In that case, figures A4-4 and A4-5 illustrate the influence of predicted 

current on trajectory. 
Ligurian sea - current amplitude/direction - Super Ensemble - 200m mean
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Figure A4-4: current influence on trajectory – desired trajectory (red) – real trajectory followed (blue) 

 

 
Figure A4-5: current influence on trajectory 3D view with projection on the sea floor of ping location – desired 

trajectory (green) – real trajectory followed (black) 
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Terrain navigation results 
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Figure A4-6: Particle filter results - Dead reckoning estimation: blue trajectory 

 - Particle filter estimation: magenta trajectory 
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Figure A4-7: Iterative particle filter results 

 

Figures A4-6 and A4-7 underline the ability of the terrain navigation particle filter to track the 

real position, and this in a much more accurate way than with the simple use of the dead 

reckoning process. 
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Figure A4-8: TBN-PF accuracy results 

 

The figure A4-8 underlines the idea that TBN-PF is fitted to long range gliders’ deployments. In 

fact, we can clearly see that the TBN-PF is not constrained by a either time or current drift and 

that the expected positioning accuracy is promising given the low cost navigation process. 

Moreover, we can outline that the use of the Terrain Navigation is not expensive as far as energy 

consumption is concerned. However, given that the backbone of the TBN-PF is a reliable 

bathymetric data, the main issue remaining is the size and the weight of a long range low 

frequency single beam echo sounder. 
Energy consumed repartition Other - low consumption sensors

Energy Budget

Ballast pump = 622.50 kJ Echo sounder = 465.75 kJ

Pinger = 19.87 kJ

Other = 252.49 kJ

Attitude sensor = 28.25 kJ

Pressure sensor = 28.25 kJ

vehicle controler = 107.35 kJ
Science payload = 84.75 kJ

Argos = 2.70 kJRF modem = 0.60 kJGPS = 0.58 kJ

Energy consumed = 1360.61 kJ

Energy left = 6439.39 kJ  
Figure A4-10: Energy budget using  
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Annex 5: Arctic crossing simulation 
Annex 5.1: Deep water Slocum glider simulation (1000m) 
 
In this section, a Arctic crossing simulation using a deep water Slocum glider (1000m) is run. To 

perform such a crossing, we define: 

- 4 waypoints 

- pitch angle: 26 degrees  

- diving target depth: 1000 meters 

- climbing target depth: 100 meters 

- pinging policy: 2 pings per dive 

performed every dive 

 

The figure A5-1 illustrates the desired trajectory pattern used for this simulation. It would 

represent some 149 days of submerged mission under the ice with neither the possibility to 

acquire a GPS fix nor to use any other device to retime the dead reckoning process. In this 

context, the terrain navigation seems perfectly fitted for such a mission. 
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Figure A5-1: desired trajectory for the Arctic crossing simulation 
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We set a “predicted” model of current on the deployment area. The blue line on the figure A5-2 

represents the trajectory that the glider is going to follow because of the current constraint, while 

its dead reckoning process will think to follow the red trajectory. 
Arctic - Artificial current amplitude/direction
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Figure A5-2: Trajectory constrained by currents 

 

The figure A5-3 also illustrates those two trajectories that lead the simulation. It also highlights 

that, due to the implemented current, the glider has drifted towards the two main Arctic basins. 

 
Figure A5-3: Arctic crossing – desired trajectory (green line) – trajectory constrained by currents with bathymetric 

measurements (black line) 



 99

Particle filter results 

- The Terrain Navigation Particle Filter presents promising results for long submerged 

glider missions. As underlined in section 4.1, the position accuracy depends on sea floor 

elevation variability. However, the glider’s drift toward the two deep sea basins implies that it 

struggles retrieving its real position in an accurate and precise way. Those difficulties are due to 

the strong uncertainty on bathymetric measurements but also to the lack of variability of the sea 

floor. This idea is illustrated in figure A5-4 (see magenta and red circles). 
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Figure A5-4: TBN-PF simulation 

 
- However the TBN-PF has the ability to detect that it is following a false track, and so to 

correct for it. To do so, the TBN-PF computes at every time increment the difference between 

the bathymetric measurement and the depth of the estimated position (see section 2.4.5 for 

statistical estimations of the particle cloud). If the difference between those two depths is too 

significant, it means that the TBN-PF estimated position is stuck in a dead end. In such case, a 

kind of particle explosion is applied to “restart” the convergence process of the particle filter. 

This particle explosion is based on the last position estimation and tries to enclose a large area. 

The figure A5-5 illustrates a particle explosion performed during this simulation and the restart 

of the tracking process. 
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Figure A5-5: “Particle explosion” when the filter is “lost” – the tracking process restarts 

 
- Despite difficulties faced in crossing the deep water basins, the TBN-PF shows encouraging 

results and clearly overtakes the dead reckoning accuracy. The figure A5-6 outlines the TBN-PF 

positioning accuracy on the whole trajectory. Given the resolution of the IBCAO Arctic chart (2 

km resolution grid) and accuracy results obtained, the TBN-PF seems to be a perfect low cost 

positioning estimation process. 
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Figure A5-6: Particle filter estimated position accuracy – it represents, according to the iteration i, the Euclidian 

distance between the position where the depth has been sampled and the estimated position  
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Figure A5-7: Global particle filter trajectory – ability to track the real position 

 
- Now if we focus on the energy aspect, the use of a low frequency single beam echo sounder 

(SBES) does not burden the energy budget of the glider (the energy budget is detailed in Annex 

3). The energy consumption of such sensor is reasonable; moreover, here the pinging policy 

would allow the SBES to work only for short periods of time, ensuring energy savings. The 

figure A5-8 summarizes the energy budget repartition. 

Energy consumed repartition Other - low consumption sensors

Energy Budget

Ballast pump = 2827.50 kJ

Echo sounder = 1320.20 kJ

Other = 5739.68 kJ

Attitude sensor = 645.38 kJ

Pressure sensor = 645.38 kJ

vehicle controler = 2452.44 kJ

Science payload = 1936.13 kJ

Pinger = 60.35 kJ

Energy consumed = 9887.38 kJ  
Figure A5-8: Energy consumption of this mission. The energy budget is more burdened by the glider classical 

components than by the SBES consumption. 
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Annex 5.2: Very deep water glider simulation (4000m) 
 

A glider capable of reaching very deep waters is considered here. Such a glider can go down to 

4000 meters. As far as the desired trajectory is concerned, the glider is here asked either to reach 

4000 meters depth or when this is not possible, to stay 500 meters above the sea floor (see figure 

A5-9 for the desired trajectory).  
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Figure A5-9: Desired trajectory with “obstacle avoidance” – pinging policy of 1 ping per dive every dive 

 
Such a glider allows the integration of a “smaller” high frequency Single Beam Echo sounder. 

Moreover, given that we are pinging closer to the seafloor, we are increasing the measurement 

confidence. This decrease in measurement uncertainty also implies a sharper particles weight 

distribution for the particle filter process. 

 

Thus, there are some a priori benefits using a very deep glider: 

- Use of a smaller and lighter SBES 

- Energy savings (small power requirements to generate a pulse) 

- Higher confidence on bathymetric measurements, which should allow 

improvements on both estimated position accuracy and precision. 



 103

The figure A5-10 illustrates both the desired trajectory (green) and the real trajectory followed, 

constrained by currents (black line with bathymetric measurements location symbolized by 

magenta dots). The desired trajectory tries to fly above a rough seafloor, avoiding a long deep 

water basin crossing. The objective of this simulation is to see to what extent the glider is able to 

find its real position (black trajectory) using the TBN-PF. The TBN-PF principle is to retime the 

dead reckoning process that tends to drift over time using bathymetric measurement sampled 

along the black trajectory. 

 
Figure A5-10: Simulation trajectories – desired trajectory (green) / real trajectory followed (black) 

 

Accuracy and precision of the particle filter estimated position on the whole trajectory 

Before showing simulation results, the figure A5-11 reminds what is inferred by the estimated 

position accuracy and precision concept. 

 
Figure A5-11: Particles’ cloud illustrating accuracy and precision concepts – PF estimate (magenta line), real 

trajectory (black), desired trajectory (red) 
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Figures A5-12 and A5-13 underline that a particles explosion has been applied after the Eurasian 

basin crossing. On the one hand, due to the depth of this basin and on the other hand, due to the 

lack of variability of the seafloor elevation, the particle filter estimated position tends to trust 

more the dead reckoning process than bathymetric measurements. So, after this crossing, when 

the glider encounters the Lomonosov ridge, particles are to far away to follow the right track, and 

so the estimated position is stuck in a dead end. As a consequence a particle explosion is applied. 

We can easily imagine asking the glider not to retime its dead reckoning process with the particle 

filter estimated position when such an explosion is applied. 
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Figure A5-12: Particle explosion after the Eurasian basin crossing 

 

 
Figure A5-13: Influence of a particle explosion on the filter’s precision ellipsoid 



 105

Figures A5-14 and A5-15 outline TBN-PF results on the whole trajectory. The accuracy is here 

burdened by this particles explosion. However, this explosion allows to restart the tracking 

process when the glider is “lost”. 
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Figure A5-14: Accuracy of the TBN-PF estimated position 

 
Those accuracy results have to be correlated with the precision i.e. the confidence we have in the 

TBN-PF estimated position.  
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Figure A5-15: Cross-track and along-track precision of the TBN-PF estimated position 

 
A particle explosion is characterized by a strong uncertainty on position and a wide particles’ 

cloud. This idea is illustrated on figure A5-15 where a drop in the estimation confidence, i.e. an 

explosion of position uncertainty, can be seen around the 240th bathymetric observation. 
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Figures A5-16 and A5-17 now illustrates the particle filter estimated position accuracy and 

precision when the “explosion” influence has been removed (giving more weight to the dead 

reckoning process when the estimated position uncertainty is too high for example). 
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Figure A5-16: Accuracy of the TBN-PF estimated position – corrected from the particles explosion influence 
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Figure A5-17: Cross-track and along-track precision of the TBN-PF estimated position – corrected from the particles 

explosion 
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Those accuracy and precision results 

(see figures A5-16 and A5-17) can be 

correlated with the seafloor elevation 

variations seen in figure A5-18 or 

with the figure A5-19 that replaces 

bathymetric observation numbers in 

their geographical context. The first 

accuracy decrease is due to the 

Eurasian basin crossing.  
 

Figure A5-18: bathymetry seen by the glider 

Then, the lack of variation of the Beaufort basin is responsible for the final drop of both accuracy 

and precision of the TBN-PF estimated position. 

 
Figure A5-19: bathymetric observation localization 

 
Thus, this “very deep water” glider simulation underlines the potential of the TBN-PF as a 

navigation estimation process. The expected positioning accuracy has been improved thanks to 

the increase in bathymetric measurement confidence. The figure A5-20 also underlines one more 

time the low energy consumption of such a process. 

Energy consumed repartition Other - low consumption sensors

Ballast pump = 1960.50 kJ

Echo sounder = 419.30 kJ

Other = 6290.05 kJ

Attitude sensor = 712.60 kJ

Pressure sensor = 712.60 kJ

vehicle controler = 2707.88 kJ

Science payload = 2137.80 kJ

Pinger = 19.17 kJ

 
Figure A5-20: Energy consumed during this long range mission (165 days) 
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Annex 6: Performance of an Inertial navigation system at Arctic Latitudes 
 

This section is based on the paper “Performance of an AUV navigation System at Arctic Latitudes” [10] 

which synthesizes results of engineering tests in preparation for the Atlantic Layer Tracking Experiment 

(ALTEX). Navigation at Arctic latitudes remains a challenge. 

A compass has difficulty determining heading because of the Earth’s 

magnetic field inclination (see figure A6-1). Thus heading 

determination is strongly linked with the pitch angle of the glider. 

Inertial instruments have difficulties to align to north. This ability is 

inherently reduced as a function of secant latitude. If we consider the 

Ixsea Octans 3000, the heading accuracy reaches 0.1 deg secant 

latitude, which implies that at 85° North, the heading accuracy is worth: 

0.1 0.1 1.15
cos( ) cos(85 )compass latitude

σ = = = o

o
 

 
Figure A6-1: Earth’s magnetic 

field inclination  
(source: www.nature.com) 

 

At lower latitudes, the integrated system (IMU providing an ideal heading reference, DVL with bottom 

track) provides accurate position estimation with a position error growth less than 0.05% of distance 

traveled. However, at Arctic latitudes, in the case where the INS uses its gyrocompass algorithm for 

alignment, both the alignment-to-north accuracy and the navigation accuracy decrease proportional to the 

secant of latitude. For a gyrocompass alignment: 

- at 80° North: position error growth reaches 0.3% of the distance traveled 

- at 85° North: position error growth reaches 0.6% of the distance traveled 

Moreover, the DVL, which is pointing upward to measure velocity with respect to the ice, can loose the 

track, implying drops in navigation accuracy. 

If we consider an Arctic crossing performed by a glider: 
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Figure A6-2: Arctic crossing trajectory 

Expected accuracy in 
positioning using a INS 
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(0.05% DT) 

Arctic 
Latitudes  

(0.5% DT) 

some 3 
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One the one hand given those accuracy results and those of the TBN-PF Arctic crossing 

simulations (see Annexes A5.1 and A5.2), and on the other and given that, as seen in section 4-4 

with the study of the dead reckoning influence on terrain navigation results, the TBN-PF does 

not need a perfect dead reckoning process to reach an acceptable accuracy, the terrain navigation 

process seems perfectly suited to long range under ice missions. 



 109

Annex 7: Magnetic compass data assimilation – TBN-PF 
improvement 

Ligurian Sea 

 
Figure A7-1: magnetic declination on a nautical 

chart 

We have to define: 

 

True North: the direction of a meridian of 

longitude which converges on the North Pole. 

Magnetic North: the direction indicated by a 

magnetic compass. 

Magnetic declination: The horizontal angular 

difference between True North and Magnetic 

North. The declination is positive when the 

magnetic north is east of true north. 

 

Heading determination 

),( kk yx  represents here the iterative 

coordinates of the desired trajectory. 

δθ +
−
−

=
+

+ )arctan(
1

1

kk

kk
k yy

xx
 

We also have to take into account the 

magnetic compass accuracy of the 

glider by the addition of a white noise.  
Figure A7-2: Heading determination in Ligurian Sea 

 

In the Ligurian sea simulation the heading is only used in the dead reckoning process. 
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Arctic Ocean 
 
We want in this section to add information in the positioning process thanks to the knowledge of 

the glider’s heading. To perform this operation, we have first to simulate “virtual” glider’s 

heading measurements thanks to a simple model. 

 
Figure A7-3: Heading determination in Arctic 

Ocean 

We use here the scalar product between 

two vectors in order to determinate the 

glider’s heading. 

vu
vu
rr

rr,
cos =θ  

We compute here the angle between the direction toward the magnetic north pole (dashed white 

line on the figure A7-4) and the direction of the real trajectory followed by the glider (the one 

constrained by currents represented by a black line on the figure A7-4). This heading angle is 

likely to be what the glider’s magnetic compass is going to provide to the dead reckoning 

process. The heading angle is then used to estimate the glider’s speed components ( )yx VV , . 
TRN-PF results
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Figure A7-4: Heading information assimilation 

- Particle filter trajectory: magenta line 

- Particle filter position estimation uncertainty ellipse: black ellipse 

- Dead reckoning trajectory: yellow line 

- Desired trajectory: red line 

- Direction toward the Magnetic North Pole: dashed white line 
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Evolution of glider’s heading along the trajectory 

We are involving here that the compass needle points toward the magnetic north pole, which is 

not exactly the case due to the complexity of the Earth’s magnetic field. We just want here to see 

to what extent the knowledge of the glider’s heading can help in the improvement of the 

positioning process. Figures illustrate the evolution of the glider’s heading along the real 

trajectory followed (black line on the figure A7-5) if we consider that the compass needle is 

pointing toward the magnetic pole. 
TRN-PF results
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Figure A7-5: Glider’s heading evolution along the trajectory 
 
Heading assimilation idea 

The idea is here to take the heading data into 

account and to assimilate it in the navigation 

estimation process. We would like to give 

more weight to particles that are at the “right 

location”, or better said, inside the cone 

uncertainty, given the measured heading (see 

figure A7-6). This is in a way a low cost 

geophysical navigation process where we are 

willing to compare a data from a 

magnetometer with the a priori IGRF model.  
Figure A7-6: Heading assimilation idea 

To perform this operation, we have to modify the likelihood function that intervenes in the 

update step of the particle filter process. Till now we have only taken the bathymetric data into 

account as the figure A7-7 outlines it. However, the likelihood function is able to take into 

account the heading information as illustrated on figure A7-8. 
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Figure A7-7: Terrain navigation likelihood function Figure A7-8: terrain navigation and heading coupling 
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All the difficulty lies here in the determination of each particle’s heading in order to compare 

with the measured heading, and so to distribute a coherent weight. However, each particle 

trajectory is too chaotic to retrieve any relevant particle’s heading information (for example due 

to the re-sampling process). The figure A7-9, illustrates the trajectory of four different isolated 

particles. 
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Figure A7-9: trajectory pattern of 4 different particles 

 
In this context, instead of working with the measured value of heading, we would have to rely on 

the couple measured/a priori magnetic declination data. But this is the principle of the 

geophysical navigation. The main issue with this geophysical navigation is that IGRF model is 

not accurate enough close to magnetic poles compared to the accuracy we can reach using the 

terrain navigation alone. Thus, given all those considerations, the heading information seems 

difficult to assimilate in the loop of the particle filter process. 


