

Projecting local sea level rise

Peter Guttorp NR and UW

An international open-access journal on applied statistics

IPCC approach

Steric sea level rise directly from CMIP5 model projections

- Eustatic slr from temperature projections forcing land ice melt models
- 3 models in CMIP5 calculate slr
- (one reports all zeros)

Semi-empirical approach

Relate historical sea level (change) to historical temperatures

Apply this relationship to projected temperatures

Local downscaling

Relate local sea level to global sea level Glacial isostatic adjustment

Results for Oslo

Year

Year

Another possibility

Relate global mean sea level to historical temperature model runs instead of observed temperatures

What about extremes?

Worst case = Mean sea level + (highest high tide – msl) + storm surge

Storm surge GEVD with location dependent on msl

Will hht change relative to msl?