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1. Evaluating probability forecasts 
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Probability forecasts 

A probability forecast is a probability distribution 
representing our uncertainty about a predictand. 

The predictand can be multi-dimensional, so can be a 
spatial field, a climatological distribution, a time-series 
with a trend or cycle, a description of the evolution of 
some phenomenon, etc. 
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What makes a good forecast? 

Sequence of cases indistinguishable at initialisation... 

G = distribution of outcomes produced by Nature 

F = forecast probability distribution 

Act to minimize expected loss calculated from forecast 

Long-run loss is minimized if F = G (Diebold et al. 1998) 

Whatever our loss function, the best forecast matches 
the distribution of outcomes produced by Nature. 
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How do we measure performance? 

We get only one outcome from G, but we can measure 
performance to reward optimal forecasts in long-run. 

Evaluate a score s(F,y) for the forecast F and outcome y. 

Only proper scores favour optimal forecasts in long-run. 

The long-run score Ey~G[s(F,y)] is optimized when F = G if 
and only if s is proper. 

Proper scores can favour forecasts that match only some 
features of optimal forecasts, e.g. to evaluate only mean. 
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Example: proper/improper scores 

Nature: N(0,1) 

Forecast: N(μ,σ2) 

Contours of long-run score. 

Proper score favours ideal 
forecast (μ = 0, σ = 1). 

Mean squared error favours 
unbiased (μ = 0) but under-
dispersed (σ = 0) forecast. 

proper score 
mean squared error 
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Example: proper/improper scores 

Nature: N(0,1) 

Forecast: N(μ,σ2) 

Contours of long-run score. 

Proper score favours ideal 
forecast (μ = 0, σ = 1). 

Squared error of the mean 
favours unbiased forecasts 
(μ = 0) and ignores spread. 

proper score 
squared error of mean 
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Probability forecasts: summary 

Measures should favour optimal forecasts in long-run. 

Only proper scores do this. 

Proper scores can be chosen to evaluate specific 
features (e.g. mean, variance) of forecasts. 

Multiple scores are needed to identify which features 
are in error. 
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2. Evaluating models 
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Evaluating models 

Should we favour models that 

a) better simulate Nature, or 

b) support better forecasts? 

We consider evaluating how well a model simulates 
Nature based on an initial-condition ensemble. (‘Model’ 
includes initialisation and ensemble generation.) 

Ensemble needn’t be a ‘forecast’ for forecast evaluation 
to be relevant. Just need a commensurate observation. 
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What makes a good model? 

Sequence of cases indistinguishable at initialisation... 

G = distribution of outcomes produced by Nature 

F = distribution from which the ensembles are samples 

If F ≠ G, the model is behaving differently to Nature. 

The best model samples ensembles from a distribution 
that matches the distribution produced by Nature. 
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Evaluate the ensemble distribution 

Ensemble 1: all members very close to outcome, 
unbiased on average, outcome often outside ensemble 

Ensemble 2: some members quite far from outcome, 
biased on average, outcome usually inside ensemble 

Evaluating the full ensemble distribution may favour #2. 

We get only one outcome, so we don’t know what range 
of behaviour is realistic. Being ‘close’ is not enough. 
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Evaluate only the ensemble mean? 

Too demanding to require well dispersed ensembles? 

Evaluating only the mean says little about the realism of 
ensemble members (especially in multiple dimensions?). 

Poor ensemble spread etc. indicates not only under-/ 
over-confidence, but that the model differs from Nature. 

 



14/20 

How do we measure performance? 

Evaluate a score s(x,y) for ensemble x and outcome y. 

Only fair scores favour optimal ensembles in long-run. 

The long-run score Ex~F,y~G[s(x,y)] is optimized when F = G 
if and only if s is fair (Ferro 2014). 

Fair scores effectively evaluate the (imperfectly known) 
distribution from which the ensembles are samples. 

Fair scores can favour ensembles that match only some 
features of optimal ensembles, e.g. to evaluate mean. 
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Model ensembles: summary 

Ensemble distribution, not only its mean, is important. 

Measures should favour optimal ensembles in long-run. 

Only fair scores do this. 

Fair scores can be chosen to evaluate specific features 
(e.g. mean, variance) of ensembles. 

Multiple scores are needed to identify which features 
are in error. 
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3. Extremes and understanding 
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Evaluating extremes 

Evaluate fair scores only when the outcome is extreme? 

This will summarize the performance in those cases, but 
will not favour optimal ensembles. (Forecaster’s 
Dilemma – S. Lerch) 

Alternative: use weighted scores to require ensemble 
distributions to match Nature better at certain possible 
values of the predictand (Gneiting and Ranjan 2011). 
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Relevance of scores 

Only fair scores should be used to rank models 
(otherwise perfect models will be penalized). 

But scores hide key information, e.g. direction of bias. 

Other methods are needed to understand performance. 

See Marion’s talk next... 
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Summary and questions 

Prefer models to simulate, or help forecast, Nature? 

Entire ensemble distribution reflects ability to simulate. 

Fair scores should be used if models are to be ranked. 

Are existing scores sensitive to process differences? 

What ensemble sizes needed to detect differences? 

How handle observation error/lack of observations? 

What other forecast evaluation methods are useful? 
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Characterization: binary case 

Let y = 1 if an event occurs, and let y = 0 otherwise. 

Let si,y be the (finite) score when i of m ensemble 
members forecast the event and reality is y. 

The (negatively oriented) score is fair if 

(m – i)(si+1,0 – si,0) = i(si-1,1 – si,1) 

for i = 0, 1, ..., m and si+1,0 ≥ si,0 for i = 0, 1, ..., m – 1. 

Ferro (2014, Q. J. Roy. Met. Soc.) 
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Measuring performance: scores 

Calculate a score for each 
forecast and then average 
over the forecasts. 

Other types of measure 
(e.g. correlation) are prone 
to spurious inflation due to 
trends in the data. 

Example: naive forecasts 
achieve correlation 0.95. 

 

Observations 
Forecasts 
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Probability forecasts: attributes 

Proper scoring rules reward calibration and sharpness. 

Calibration: reality looks like random draws from the 
forecast distributions 

Sharpness: forecast distributions are concentrated 

The long-run (proper) score decomposes as 

S(F,G) = S(G,G) + C(F,G) 

where S(G,G) is concave and measures sharpness, and 
C(F,G) is non-negative and measures calibration. 


